(2004•臨沂)如圖,AB是⊙O的直徑,P為AB延長線上一點(diǎn),PC切⊙O于點(diǎn)C,PC=4,PB=2,則⊙O的半徑等于( )

A.1
B.2
C.3
D.4
【答案】分析:根據(jù)切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng),即:PC2=PB×PA,可將AP的長求出,進(jìn)而可將⊙O的半徑求出.
解答:解:∵PC切⊙O于點(diǎn)C,PC=4,PB=2,
∴PC2=PB×PA,即42=2PA,
解得PA=8,
∴OA=OB=(PA-PB)=3,
故⊙O的半徑為3.
故選C.
點(diǎn)評:本題主要考查圓的切割線定理.切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2004•臨沂)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1,這條曲線是函數(shù)y=的圖象在第一限內(nèi)的一個(gè)分支,點(diǎn)P是這條曲線的任意一點(diǎn),它的坐標(biāo)是(a,b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN(點(diǎn)M、N為垂足)分別與直線AB相交于點(diǎn)E和F.
(1)求△OEF的面積(a,b的代數(shù)式表示);
(2)△AOF與△BOE是否一定相似?如果一定相似,請證明;如果不一定相似,請說明理由;
(3)當(dāng)點(diǎn)P在曲線上移動(dòng)時(shí),△OEF隨之變動(dòng),指出在△OEF的三個(gè)內(nèi)角中,是否有大小始終保持不變的角?若有,請求出其大;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省臨沂市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•臨沂)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1,這條曲線是函數(shù)y=的圖象在第一限內(nèi)的一個(gè)分支,點(diǎn)P是這條曲線的任意一點(diǎn),它的坐標(biāo)是(a,b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN(點(diǎn)M、N為垂足)分別與直線AB相交于點(diǎn)E和F.
(1)求△OEF的面積(a,b的代數(shù)式表示);
(2)△AOF與△BOE是否一定相似?如果一定相似,請證明;如果不一定相似,請說明理由;
(3)當(dāng)點(diǎn)P在曲線上移動(dòng)時(shí),△OEF隨之變動(dòng),指出在△OEF的三個(gè)內(nèi)角中,是否有大小始終保持不變的角?若有,請求出其大。蝗魶]有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2004•臨沂)如圖△ABC中,AB=AC,EF∥BC,且⊙O內(nèi)切于四邊形BCFE.
(1)當(dāng)時(shí),sinB=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:選擇題

(2004•臨沂)如圖,AD是△ABC的中線,∠ADC=60°,BC=4,把△ADC沿直線AD折疊后,點(diǎn)C落在C′的位置上,那么BC′為( )

A.1
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省臨沂市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•臨沂)如圖,AD是△ABC的中線,∠ADC=60°,BC=4,把△ADC沿直線AD折疊后,點(diǎn)C落在C′的位置上,那么BC′為( )

A.1
B.
C.2
D.

查看答案和解析>>

同步練習(xí)冊答案