如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為   
【答案】分析:由AC是⊙O的直徑得∠ABC=90°,由∠BAC=30°,AC=2OC=2,得CB=1,AB=;由AP為切線得∠CAP=90°,再由切線長定理知得△PAB為正三角形,從而求得△ABP的周長.
解答:解:∵AC是⊙O的直徑,
∴∠ABC=90°,∠BAC=30°,CB=1,AB=
∵AP為切線,
∴∠CAP=90°,∠PAB=60°,
又∵AP=BP,
∴△PAB為正三角形,
∴周長=
點評:本題考查了圓的切線性質、切線長定理等邊三角形的判定和性質,直角三角形的性質等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設BD=x,CE=y,求y與x直間的函數(shù)關系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關系,能使(1)中y與x的關系式仍然成立?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網在“汶川”地震后人們積極開展自救.如圖,這是小明家搭建的簡易帳篷,小明準備從帳篷豎直的支撐竿AB的頂部A向地面拉一根繩子AC固定帳篷.若地面固定點C到帳篷支撐竿底部B的距離是4米,∠ACB=30°,求支撐竿AB的長和繩子AC的長.(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某市的跨江斜拉大橋建成通車,如圖,BC是水平橋面,AD是豎直橋墩,按工程設計的要求,斜拉的鋼線AB、AC應相等,請你用學過的知識來檢驗AB、AC的長度是相等的,寫出你的檢驗方法步驟,并簡要說明理由.(檢驗工具為刻度尺、測角儀;檢驗時,人只能站在橋面上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖(1),在水平地面點A處有一網球發(fā)射器向空中發(fā)射網球,網球飛行路線是一條拋物線,在地面上落點為B.有人在直線AB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓網球落入桶內.已知AB=4米,AC=3米,網球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網球的體積和圓柱形桶的厚度忽略不計).
(1)在如圖(2)建立的坐標系下,求網球飛行路線的拋物線解析式;
(2)若豎直擺放5個圓柱形桶時,則網球能落入桶內嗎?說明理由;
(3)若要使網球能落入桶內,求豎直擺放的圓柱形桶的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2008年江蘇省南通市如東縣馬塘中學中考數(shù)學模擬試卷(解析版) 題型:解答題

在“汶川”地震后人們積極開展自救.如圖,這是小明家搭建的簡易帳篷,小明準備從帳篷豎直的支撐竿AB的頂部A向地面拉一根繩子AC固定帳篷.若地面固定點C到帳篷支撐竿底部B的距離是4米,∠ACB=30°,求支撐竿AB的長和繩子AC的長.(結果保留根號).

查看答案和解析>>

同步練習冊答案