(2010•眉山)如圖,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,則下底BC的長為   
【答案】分析:過A作AE∥CD,把梯形分成平行四邊形和直角三角形,利用平行四邊形的對邊相等得到CE=AD,所以BE可以求出,在直角三角形中,根據(jù)∠B=30°,利用勾股定理求出BE,BC的長也就可以求出了.
解答:解:如圖,過A作AE∥CD交BC于點E,
∵AD∥BC,∴四邊形AECD是平行四邊形,
∴CE=AD=4,
∵∠B=30°,∠C=60°,
∴∠BAE=90°,
∴AE=BE(直角三角形30°角所對的直角邊等于斜邊的一半),
在Rt△ABE中,BE2=AB2+AE2,
即BE2=(32+(BE)2,
BE2=27+BE2,
BE2=36,
解得BE=6,
∴BC=BE+EC=6+4=10.
故答案為:10.
點評:通過作腰的平行線,把梯形分成平行四邊形和直角三角形,再利用直角三角形30°角所對的直角邊等于斜邊的一半和勾股定理求解,考慮本題的突破口在于兩個已知角的和是90°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•眉山)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=+bx+c經(jīng)過B點,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的前提下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標(biāo)為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•眉山)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=+bx+c經(jīng)過B點,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的前提下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標(biāo)為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2010•眉山)如圖,Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)得到的,連接CC′交斜邊于點E,CC′的延長線交BB′于點F.
(1)證明:△ACE∽△FBE;
(2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時,△ACE與△FBE是全等三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2010•眉山)如圖,∠A是⊙O的圓周角,∠A=40°,則∠OBC的度數(shù)為    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2010•眉山)如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

同步練習(xí)冊答案