在平面直角坐標系中,點A、B的坐標分別為(10,0),(2,4).
(1)若點C是點B關于x軸的對稱點,求經(jīng)過O、C、A三點的拋物線的解析式;
(2)若P為拋物線上異于C的點,且△OAP是直角三角形,請直接寫出點P的坐標;
(3)若拋物線頂點為D,對稱軸交x軸于點M,探究:拋物線對稱軸上是否存在異于D的點Q,使△AQD是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
解:(1)∵B(2,4),
∴C(2,-4);
設過O、C、A三點的拋物線解析式為y=ax(x-10)
將C(2,-4)代入,
得a=
;
所以,拋物線解析式為y=
-
;
(2)存在.P(8,-4)
(3)存在點Q使得△DQA為等腰三角形
由(1)拋物線解析式為y=
-
可求得頂點D的坐標(5,-
)
則|AD|=
,若|QA|=|DA|
則由對稱性知滿足條件的Q點的坐標為(5,
),記為Q:(5,
)
若|QD|=|DA|
則結合圖形,可求得滿足條件的Q點坐標為(5,
),(5,
)
記為Q
2(5,
),Q
3(5,
);
若|QD|=|QA|
則設Q(5,y),由
解得y=
,
所以滿足條件的Q點坐標為(5,
),記為Q
4(5,
)
所以,滿足條件的點Q有Q
1(5,
),Q
2(5,
),Q
3(5,-
),Q
4(5,-
)四個點.
分析:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),可據(jù)此求出點C的坐標;然后用待定系數(shù)法求出拋物線的解析式;
(2)根據(jù)O、A、C的坐標可知:△OAC是直角三角形,且∠OCA=90°,根據(jù)拋物線的對稱性知C點關于拋物線對稱軸的對稱點也一定符合條件,可由此寫出P點的坐標;
(3)根據(jù)拋物線的解析式可求出拋物線的頂點坐標和對稱軸方程,即可確定D點的坐標和Q點的橫坐標;設出Q點縱坐標,然后分別表示出AD、QD、QA的長;根據(jù)①Q(mào)D=DA,②QD=QA,③AD=AQ;三種不同情況所得到的等量關系來求出Q點的坐標.
點評:此題主要考查了二次函數(shù)解析式的確定、拋物線的對稱性、等腰三角形的判定等重要知識點,在等腰三角形腰和底不確定的情況下,一定要分類討論,以免漏解.