【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為(﹣45),(﹣1,3).

1)請在如圖所示的網(wǎng)格平面內作出平面直角坐標系;

2)請把ABC先向右移動5個單位,再向下移動3個單位得到ABC,在圖中畫出ABC;

3)求ABC的面積.

【答案】(1)在Ay軸向右平移4個單位,x軸向下平移5個單位得到即可;(2)詳見解析;(3)4.

【解析】

1)根據(jù)A點坐標,將坐標軸在A點平移到原點即可;

2)利用點的坐標平移性質得出A,B,C坐標即可得出答案;

3)利用矩形面積減去周圍三角形面積得出即可.

解:(1)∵點A的坐標為(﹣45),

∴在Ay軸向右平移4個單位,x軸向下平移5個單位得到即可;

2)如圖所示:ABC即為所求;

3ABC的面積為:3×4×3×2×1×2×2×44

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°,BE,DF分別是∠ABC,ADC的平分線.

11與∠2有什么關系,為什么?

2BEDF有什么關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,連接DE

1求證:DEBE;

2如果OECD,求證:BD·CE=CD·DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D是直線AB上一點,延長CB到點E,使BEAD,連接DEDC,

1)若點D在線段AB上,且AB6,AD2(如圖①),求證:DEDC;并求出此時CD的長;

2)若點D在線段AB的延長線上,(如圖②),此時是否仍有DEDC?請證明你的結論;

3)在(2)的條件下,連接AE,若,求CDAE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90,CDAB,BC=1.

(1)如果∠BCD=30,求AC;

(2)如果tanBCD,求CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】o的半徑是13,弦ABCD,AB=24,CD=10,則AB與CD的距離是( )

A.7 B.17 C.7或17 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BGAE于點G,延長BGAD于點H.在下列結論中:

AH=DF; ②∠AEF=45°; ③S四邊形EFHG=SDEF+SAGH,

其中正確的結論有_____________________.(填正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,AD=6cm,CD=8cm,BC=BD=10cm,點P由B出發(fā)沿BD方向勻速運動,速度為

1cm/s;同時,線段EF由DC出發(fā)沿DA方向勻速運動,速度為1cm/s,交BD于Q,連接PE.若設運動時間為t(s)(0<t<5).解答下列問題:

(1)當t為何值時,PEAB?

(2)是否存在某一時刻t,使SDEQ=?若存在,求出此時t的值;若不存在,說明理由.

(3)如圖2連接PF,在上述運動過程中,五邊形PFCDE的面積是否發(fā)生變化?說明理由.

查看答案和解析>>

同步練習冊答案