如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,∠BAC=90°,OA=2,BC=8.則⊙O的半徑為( 。
分析:延長AO于BC交于點D,連接OB,由對稱性及三角形ABC為等腰直角三角形,得到AD與BC垂直,根據(jù)三線合一得到D為BC的中點,利用直角三角形斜邊的中線等于斜邊的一半得到AD為BC的一半,求出AD的長,由AD-OA求出OD的長,再利用垂徑定理得到D為BC的中點,求出BD的長,在直角三角形BOD中,利用勾股定理求出OB的長,即為圓的半徑.
解答:解:延長AO交BC于點D,連接OB,由對稱性及等腰Rt△ABC,得到AD⊥BC,
∴D為BC的中點,即BD=CD=
1
2
BC=4,AD=
1
2
BC=4,
∵OA=2,∴OD=AD-OA=4-2=2,
在Rt△BOD中,根據(jù)勾股定理得:OB=
OD2+BD2
=2
5
,
則圓的半徑為2
5

故選C
點評:此題考查了垂徑定理,勾股定理,以及等腰三角形的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O過點B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為(  )
A、
10
B、2
3
C、3
2
D、
13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,以點O為圓心,半徑為4的圓交x軸于A,B兩點,交y軸于C,D兩點,點P為弧AC上的一動點,延長CP交x軸于點E;連接PB,交OC于點F.
(1)若點F為OC的中點,求PB的長;
精英家教網(wǎng)
(2)求CP•CE的值;
(3)如圖2,過點OH∥AP交PD于點H,當點P在弧AC上運動時,試問
APDH
的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點,F(xiàn)為邊AB上一動點,AF=nBF,E為直線BC上一點,且∠EDF=120°.
 
(1)如圖1,當n=2時,求
CE
CD
=
1
3
1
3
;
(2)如圖2,當n=
1
3
時,求證:CD=2CE;
(3)如圖3,過點D作DM⊥BC于M,當
n=3
n=3
時,C點為線段EM的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖A,△ABC各角的平分線AD,BE,CF交于點O.
(1)試說明∠BOC=90°+
12
∠BAC;
(2)如圖B,過點O作OG⊥BC于G,試判斷∠BOD與∠COG的大小關(guān)系(大于,小于或等于),并說明理由.

查看答案和解析>>

同步練習冊答案