二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(x2,0)和B(x1,0)兩點(diǎn),A點(diǎn)在原點(diǎn)左方,B點(diǎn)在原點(diǎn)右方,與y軸交于C(0,y1),且知C點(diǎn)在原點(diǎn)上方,y1>x1,BC=10,x1,y1是方程x2-(k+9)x+3(k+11)=0的兩根,直線y=mx+n過(guò)A、C兩點(diǎn),且tan∠CAB=4.
(1)求:A、B、C三點(diǎn)的坐標(biāo);
(2)求:過(guò)A、C兩點(diǎn)的一次函數(shù)的解析式;
(3)求:過(guò)A、B、C三點(diǎn)的二次函數(shù)的解析式.

解:(1)∵x1,y1是原方程的兩根,
,
又∵BC=10,
∴x12+y12=102
即:(x1+y12-2x1y1=100,
∴(k+9)2-2×3(k+11)=100
即:k2+12k-85=0
∴k1=5,k2=-17
當(dāng)k=5時(shí),∴,
解得:
但∵y1>x1
∴取
當(dāng)k=-17時(shí),x1+y1=-17+9<0
當(dāng)∵x1>0,y1>0
∴此時(shí)無(wú)解.
故:B(6,0),C(0,8),
∵tan∠CAB=4,即=4,
∴|x2|=2?x2=-2或2
但∵x2<0,
∴只取x2=-2
故:A(-2,0).
(2)∵直線y=mx+n過(guò)A、C兩點(diǎn)
,
解得:
故;過(guò)A、C兩點(diǎn)的一次函數(shù)的解析式為:y=4x+8.
(3)∵A(-2,0),B(6,0)兩點(diǎn)在此二次函數(shù)上,
∴可設(shè)此函數(shù)為:y=a(x+2)(x-6)
又∵C(0,8)在此二次函數(shù)上,
∴8=a(0+2)(0-6)?a=-
∴可設(shè)此函數(shù)為:y=-(x+2)(x-6)
即:y=-x2+x+
分析:(1)由于x1,y1是方程x2-(k+9)x+3(k+11)=0的兩根,根據(jù)韋達(dá)定理可得出x1+y1=k+9,x1y1=3(k+11),根據(jù)BC=10,即x12+y12=100,聯(lián)立三式即可求出k的值,也就能求出x1,y1的值.得出B,C的坐標(biāo)后,根據(jù)tan∠CAB=4即可求出A點(diǎn)的坐標(biāo).
(2)已知了A、C的坐標(biāo),可用待定系數(shù)法求出直線AC的解析式.
(3)可根據(jù)A、B、C三點(diǎn)的坐標(biāo)用待定系數(shù)法求解.
點(diǎn)評(píng):本題主要考查了一元二次方程根與系數(shù)的關(guān)系、用待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式等知識(shí)點(diǎn),根據(jù)韋達(dá)定理和BC的長(zhǎng)求出B、C的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示.對(duì)于下列說(shuō)法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案