已知四邊形ABCD,對角線AC、BD交于點O.現(xiàn)給出四個條件:①AC⊥BD;②AC平分對角線BD;③AD∥BC;④∠OAD=∠ODA,請你以其中的三個條件作為命題的題設(shè),以“四邊形ABCD為菱形”作為命題的結(jié)論.
1.寫出一個真命題,并證明
2.寫出一個假命題,并舉出一個反例說明
1.如:若AC⊥BD,AC平分線段BD,AD∥BC,則四邊形ABCD是菱形.
證明:如圖,設(shè)AC與BD交于上點O.
∵AC平分BD
∴BO=DO
∵AD∥BC,
∴∠ADO=∠CBO
在△AOD和△COB中,
∵ ∠ADO=∠CBO, BO=DO ,∠AOD=∠COB ,
∴△AOD≌△COB(ASA)
∴AO=CO
∴四邊形ABCD是平行四邊形
又∵AC⊥BD
∴四邊形ABCD是菱形;
2.如:若AC平分BD,AD∥BC,∠OAD=∠ODA,則四邊形ABCD是菱形.
反例:如圖,四邊形ABCD為矩形.
【解析】(1)結(jié)合題中條件,從對角線上考慮:①AC⊥BD;②AC平分對角線BD,只要再說明AO與CO相等就可以了,利用③AD∥BC證明三角形全等就可以得到;
(2)利用條件說明是矩形,所以是菱形是假命題.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、△ABE≌△DCE | B、∠BDA=45° | C、S四邊形ABCD=24.5 | D、圖中全等的三角形共有2對 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com