【題目】如圖,在數(shù)軸上點A、B、C表示的數(shù)分別為﹣2、1、6,點A與點B之間的距離表示為AB,點B與點C之間的距離表示為BC,點A與點C之間的距離表示為AC

(1)請直接寫出AB、BC、AC的長度;

(2)若點DA點出發(fā),以每秒1個單位長度的速度向左運動,點EB點出發(fā)以每秒2個單位長度的速度向右運動,點FC點出發(fā)以每秒5個單位長度的速度向右運動.設(shè)點D、E、F同時出發(fā),運動時間為t秒,試探索:EF﹣DE的值是否隨著時間t的變化而變化?請說明理由.

(3)若點M以每秒4個單位的速度從A點出發(fā),點N以每秒3個單位的速度運動從C點出發(fā),設(shè)點M、N同時出發(fā),運動時間為t秒,試探究:經(jīng)過多少秒后,點M、N兩點間的距離為14個單位.

【答案】(1)8;(2)不變;(3)6秒或秒或秒或22

【解析】

(1)根據(jù)兩點間的距離公式即可求解;

(2)用t表示出EF、DE,計算即可求解;

(3)分4種情況:①點M、N同時向左出發(fā);②點M向左出發(fā),點N向右出發(fā);③點M向右出發(fā)、點N向左出發(fā);④點M、N同時向右出發(fā);根據(jù)等量關(guān)系點M、N兩點間的距離為14個單位列出方程求解即可.

解:(1)∵在數(shù)軸上點A、B、C表示的數(shù)分別為﹣2、1、6,

AB=1﹣(﹣2)=3,

BC=6﹣1=5,

AC=6﹣(﹣2)=8;

(2)不變,

D、E、F同時出發(fā),運動t秒時,D點表示的數(shù)為﹣2﹣t,E點表示的數(shù)為1+2t,F(xiàn)點表示的數(shù)為6+5t,

EF=(6+5t)﹣(1﹣2t)=5+3t,DE=(1+2t)﹣(﹣2﹣t)=3+3t,

EF﹣DE=(5+3t)﹣(3+3t)=2,

EF﹣DE的值不隨著時間t的變化而改變;

(3)①點M、N同時向左出發(fā),依題意有

4t﹣3t=14﹣8,

解得t=6;

②點M向左出發(fā),點N向右出發(fā),依題意有

4t+3t=14﹣8,

解得t=;

③點M向右出發(fā)、點N向左出發(fā),依題意有

4t+3t=14+8,

解得t=;

④點M、N同時向右出發(fā),依題意有

4t﹣3t=14+8,

解得t=22.

故經(jīng)過6秒或秒或秒或22秒后,點M、N兩點間的距離為14個單位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小芳從家騎自行車去學(xué)校,所需時間y(min)與騎車速度x(m/min)之間的反比例函數(shù)關(guān)系如圖

(1)小芳家與學(xué)校之間的距離是多少?

(2)寫出yx的函數(shù)表達式;

(3)若小芳720分從家出發(fā),預(yù)計到校時間不超過728分,請你用函數(shù)的性質(zhì)說明小芳的騎車速度至少為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運動的時間為t秒.

問:(1)動點P從點A運動至C點需要多少時間?

(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.例如:若數(shù)軸上數(shù)2表示的點與數(shù)﹣2表示的點重合,則數(shù)軸上數(shù)﹣4表示的點與數(shù)4表示的點重合,根據(jù)你對例題的理解,解答下列問題:

若數(shù)軸上數(shù)﹣3表示的點與數(shù)1表示的點重合.(根據(jù)此情境解決下列問題)

①則數(shù)軸上數(shù)3表示的點與數(shù)   表示的點重合.

②若點A到原點的距離是5個單位長度,并且A、B兩點經(jīng)折疊后重合,則B點表示的數(shù)是   

③若數(shù)軸上M、N兩點之間的距離為2018,并且M、N兩點經(jīng)折疊后重合,

如果M點表示的數(shù)比N點表示的數(shù)大,則M點表示的數(shù)是   .則N點表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達A景區(qū),繼續(xù)向東走2.5千米到達B景區(qū),然后又回頭向西走8.5千米到達C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充好電而途中不充電的情況下完成此次任務(wù)?請計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用題.

(1)商店出售茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,該商品制定了兩種優(yōu)惠方法:

買一只茶壺贈一只茶杯;按總價的90%付款.某顧客購買茶壺5只,茶杯若干只(不少于5只),問顧客買多少只茶杯時,兩種方法付款相同.假如該顧客買了茶杯20只,哪種買法實惠?

(2)某人原計劃騎車以每小時12千米的速度由A地到B地,這樣便可在規(guī)定的時間到達,但他因事將原計劃出發(fā)的時間推遲了20分鐘,只好以每小時15千米的速度前進,結(jié)果比規(guī)定時間早4分鐘到達B地,求A,B兩地間的距離.

(3)某工廠完成一批產(chǎn)品,一車間單獨完成需30天,二車間單獨完成需20天.

如一車間先做若干天,然后由二車間繼續(xù)做,直至完成,前后共做了25天,問一車間先做了幾天?

如一車間先做了3天后,二車間加入一起做,還需多少天才能完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從南京站開往上海站的一輛和諧號動車,中途只?刻K州站,甲、乙、丙3名互不相識的旅客同時從南京站上車.
(1)求甲、乙、丙三名旅客在同一個站下車的概率;
(2)求甲、乙、丙三名旅客中至少有一人在蘇州站下車的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)的圖象在每一個象限內(nèi),y值隨x值的增大而增大的是(
A.y=﹣x+1
B.y=x2﹣1
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠B=60°,點E在邊BC上,點F在邊CD上.若EB=2,DF=3,∠EAF=60°,則△AEF的面積等于

查看答案和解析>>

同步練習(xí)冊答案