如圖,AD是△ABC中∠BAC的平分線,DE⊥AB于點E,DF⊥AC交AC于點F.S△ABC=7,DE=2,AB=4,則AC長是( )

A.4
B.3
C.6
D.5
【答案】分析:首先由角平分線的性質(zhì)可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面積公式得出結果.
解答:解:∵AD是△ABC中∠BAC的平分線,DE⊥AB于點E,DF⊥AC交AC于點F,
∴DF=DE=2.
又∵S△ABC=S△ABD+S△ACD,AB=4,
∴7=×4×2×AC×2,
∴AC=3.
故選B.
點評:本題主要考查了角平分線的性質(zhì);利用三角形的面積求線段的大小是一種很好的方法,要注意掌握應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案