【題目】已知AB是⊙O的弦,PAB的中點(diǎn),連接OA、OP,將△OPA繞點(diǎn)O旋轉(zhuǎn)到△OQB.設(shè)⊙O的半徑為1,AOQ=135°,則AQ的長(zhǎng)為______

【答案】

【解析】

根據(jù)等腰三角形的性質(zhì)得到OP⊥AB,∠AOP=∠BOP,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BOQ=∠AOP,QB=AP,推出△AOB是等腰直角三角形,求得∠ABQ=90°,根據(jù)勾股定理即可得到結(jié)論.

解:如圖,∵OA=OB,P為AB的中點(diǎn),
∴OP⊥AB,∠AOP=∠BOP,
∵將△OPA繞點(diǎn)O旋轉(zhuǎn)到△OQB,
∴∠BOQ=∠AOP,QB=AP,
∴∠AOP=∠BOP=∠BOQ,
∵∠AOQ=135°,
∴∠AOP=∠BOP=∠BOQ=45°,
∴△AOB是等腰直角三角形,
∴AP=OP=BQ=AB,∠OAP=∠ABO=∠OBQ=45°,
∴∠ABQ=90°,
∵OA=OB=1,
∴AB=
∴BQ=
∴AQ=
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)C是O中直徑AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C作CDAB交O于點(diǎn)D,點(diǎn)M是直徑AB上一固定點(diǎn),作射線DM交O于點(diǎn)N.已知AB=6cm,AM=2cm,設(shè)線段AC的長(zhǎng)度為xcm,線段MN的長(zhǎng)度為ycm.

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量的變化而變化的規(guī)律進(jìn)行了探索.

下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

4

3.3

2.8

2.5

2.1

2

(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

(2)在圖2中建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:當(dāng)AC=MN時(shí),x的取值約為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的銷售單價(jià)為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上.單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè)面包.設(shè)這種面包的銷售單價(jià)為x角(每個(gè)面包的成本是5角).零售店每天銷售這種面包的利潤(rùn)為y角.

(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);

(2)求xy之間的函數(shù)關(guān)系式:

(3)當(dāng)這種面包的銷售單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,2),B(p,q)在直線上拋物線m經(jīng)過(guò)點(diǎn)B、C(p+4,q),且它的頂點(diǎn)N在直線l.

(1)B(-2,1),

①請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出直線l與拋物線m的示意圖;

②設(shè)拋物線m上的點(diǎn)Q的模坐標(biāo)為e(-2≤e≤0)過(guò)點(diǎn)Qx軸的垂線,與直線l交于點(diǎn)H.QH=d,當(dāng)de的增大面增大時(shí),求e的取值范圍;

(2)拋物線my軸交于點(diǎn)F,當(dāng)拋物線mx軸有唯一交點(diǎn)時(shí),判斷NOF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年四月份,某校在孝感市爭(zhēng)創(chuàng)全國(guó)文明城市 活動(dòng)中,組織全體學(xué)生參加了弘揚(yáng)孝感文化,爭(zhēng)做文明學(xué)生知識(shí)競(jìng)賽,賽后隨機(jī)抽取了部分參賽學(xué)生的成績(jī),按得分劃分 六個(gè)等級(jí),并繪制成如下兩幅完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)表提供的,解答下列問(wèn)題:

(1)本次抽樣調(diào)查樣本容量為 表中: , 扇形統(tǒng)計(jì)圖中, 等級(jí)對(duì)應(yīng)圓心角 等于 ;(4分=1+1+1

(2)該校決定從本次抽取 等級(jí)學(xué)生(為甲、乙、丙、丁)中,隨機(jī)選擇 名成為學(xué)校文明講志愿者,請(qǐng)你用列表法或畫樹狀的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+cx軸交于A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對(duì)稱軸是直線x=1,直線BC與拋物線的對(duì)稱軸交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)求直線BC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,過(guò)B,C兩點(diǎn)的⊙OAC于點(diǎn)D,交AB于點(diǎn)E,連接EO并延長(zhǎng)交⊙O于點(diǎn)F.連接BF,CF.若∠EDC=135°,CF=,AE2+BE2的值為 ( )

A. 8 B. 12 C. 16 D. 20

查看答案和解析>>

同步練習(xí)冊(cè)答案