正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在上時(shí),求正方形與扇形不重合的面積.

【答案】分析:(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積=π×9-1=,直線過(guò)點(diǎn)(0,1),(1,0)用待定系數(shù)法求得直線CD對(duì)應(yīng)的函數(shù)關(guān)系式y(tǒng)=-x+1;
(2)直線CD與扇形AOB切于點(diǎn)P,連接OP,則OP⊥CD,根據(jù)正方形的性質(zhì)和等腰直角三角形的性質(zhì)求得直線與x,y軸的交點(diǎn)后用待定系數(shù)法求直線的解析式;
(3)分兩種情況,根據(jù)扇形的面積公式和正方形的面積公式求解.
解答:解:(1),y=-x+1;

(2)設(shè)直線CD與扇形AOB切于點(diǎn)P,連接OP,則OP⊥CD;
∵CD為正方形OCED的對(duì)角線,
∴∠OCD=∠ODC=45°;
在Rt△OCP中,
∵OP=OA=3,sin∠OCP=,
∴OC=
∴C(,0),D(0,);
設(shè)直線CD的解析式為y=kx+b,

∴k=-1;
∴y=-x+3;

(3)①如圖a,當(dāng)點(diǎn)E落在弧AB上時(shí),連接OE.則OE=OA=3;
∴S不重合=S扇AOB-S正OCED=
②如圖b,當(dāng)點(diǎn)C、D分別與A、B重合時(shí),OC=OA=3;
∴S不重合=S正OCED-S扇AOB=

點(diǎn)評(píng):本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、切線的概念、一次函數(shù)解析式的確定等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是
 
;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式精英家教網(wǎng)
 
;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在
AB
上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正方形OCED與扇形OAB有公共頂點(diǎn)O,分別以O(shè)A、OB所在直線為x軸,y軸建立平面直角坐精英家教網(wǎng)標(biāo)系.如圖所示、正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng)、設(shè)OC=x,OA=3,則:
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是
 
;
(2)當(dāng)x=
 
時(shí),直線CD與扇形OAB相切,此時(shí)切點(diǎn)坐標(biāo)是
 
;
(3)當(dāng)正方形有頂點(diǎn)恰好落在AB上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在數(shù)學(xué)公式上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》中考題集(81):3.4 弧長(zhǎng)和扇形的面積,圓錐的側(cè)面展開圖(解析版) 題型:解答題

正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省福州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•福州)正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案