分析 (1)根據(jù)AD∥BC,∠EAD=∠B,∠DAC=∠C,結(jié)合題干條件得到∠EAD=∠DAC,于是判定AD平分∠CAE;
(2)首先求出∠EAC的度數(shù),然后根據(jù)角平分線的定義求出∠EAD的度數(shù),再根據(jù)平行線的性質(zhì)得到∠B的度數(shù).
解答 (1)證明:∵AD∥BC,
∴∠EAD=∠B,∠DAC=∠C,
∵∠B=∠C,
∴∠EAD=∠DAC,
∴AD平分∠CAE;
(2)解:∵∠BAC=120°,
∴∠EAC=60°,
∵AD平分∠CAE,
∴∠EAD=$\frac{1}{2}$∠EAC=30°,
∵AD∥BC,
∴∠EAD=∠B,
∴∠B=30°.
點評 本題主要考查了平行線的性質(zhì)以及角平分線的定義,解答本題的關鍵是熟練掌握兩直線平行,同位角相等,兩直線平行,內(nèi)錯角相等.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com