【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ,點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時(shí),PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
【答案】(1)-2+3t,8-2t;(2)相遇點(diǎn)表示的數(shù)為4;(3)當(dāng)t=1或3時(shí),PQ=AB;(4)點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度不發(fā)生變化,理由見解析.
【解析】
(1)根據(jù)題意,可以用含t的代數(shù)式表示出點(diǎn)P和點(diǎn)Q;
(2)根據(jù)當(dāng)P、Q兩點(diǎn)相遇時(shí),P、Q表示的數(shù)相等,可以得到關(guān)于t的方程,然后求出t的值,本題得以解決;
(3)根據(jù)PQ=AB,可以求得相應(yīng)的t的值;
(4)根據(jù)題意可以表示出點(diǎn)M和點(diǎn)N,從而可以解答本題.
(1)由題意可得,
t秒后,點(diǎn)P表示的數(shù)為:-2+3t,點(diǎn)Q表示的數(shù)為:8-2t,
故答案為:-2+3,8-2t;
(2)∵當(dāng)P、Q兩點(diǎn)相遇時(shí),P、Q表示的數(shù)相等,
∴-2+3t=8-2t,
解得:t=2,
∴當(dāng)t=2時(shí),P、Q相遇,
此時(shí),-2+3t=-2+3×2=4,
∴相遇點(diǎn)表示的數(shù)為4;
(3)∵t秒后,點(diǎn)P表示的數(shù)-2+3t,點(diǎn)Q表示的數(shù)為8-2t,
∴PQ=|(-2+3t)-(8-2t)|=|5t-10|,
又
∴|5t-10|=5,
解得:t=1或3,
∴當(dāng)t=1或3時(shí),PQ=AB;
(4)點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度不發(fā)生變化,
理由如下:∵點(diǎn)M表示的數(shù)為:
點(diǎn)N表示的數(shù)為:
∴MN=
∴點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度不發(fā)生變化.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳節(jié)約用水,小強(qiáng)隨機(jī)調(diào)查了某小區(qū)部分家庭3月份的用水情況,并將收集的數(shù)據(jù)整理成如下統(tǒng)計(jì)圖.
(1)小明一共調(diào)查了多少戶家庭?
(2)求所調(diào)查家庭3月份用水量的眾數(shù)、中位數(shù)和平均數(shù);
(3)若該小區(qū)有800戶居民,請你估計(jì)這個(gè)小區(qū)3月份的總用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)C、B,與直線相交于點(diǎn)A.
(1)求A點(diǎn)坐標(biāo);
(2)如果在y軸上存在一點(diǎn)P,使△OAP是以O(shè)A為底邊的等腰三角形,求P點(diǎn)坐標(biāo);
(3)在直線上是否存在點(diǎn)Q,使△OAQ的面積等于6?若存在,請求出Q點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣,0),點(diǎn)B的坐標(biāo)為(0,3).
(1)求過A,B兩點(diǎn)直線的函數(shù)表達(dá)式;
(2)過B點(diǎn)作直線BP與x軸交于點(diǎn)P,且使OP=2OA,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);
(2)若OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°.
①用含x的代數(shù)式表示∠EOF;
②求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】韋魏一家三口隨旅游團(tuán)支九寨溝旅游,韋魏把旅途費(fèi)用支出情況制成了如下的統(tǒng)計(jì)圖,若他們共花費(fèi)人民幣8600元,
⑴哪一部分的費(fèi)用占整個(gè)支出的,花費(fèi)了多少元?
⑵在食宿上花費(fèi)了多少元?
⑶這一家往返的路費(fèi)占總支出的百分之幾?花費(fèi)了多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com