如圖1,點(diǎn)A為拋物線C1:y=x2﹣2的頂點(diǎn),點(diǎn)B的坐標(biāo)為(1,0)直線AB交拋物線C1于另一點(diǎn)C
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=3交直線AB于點(diǎn)D,交拋物線C1于點(diǎn)E,平行于y軸的直線x=a交直線AB于F,交拋物線C1于G,若FG:DE=4:3,求a的值;
(3)如圖2,將拋物線C1向下平移m(m>0)個單位得到拋物線C2,且拋物線C2的頂點(diǎn)為點(diǎn)P,交x軸于點(diǎn)M,交射線BC于點(diǎn)N.NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時,求m的值.
解:(1)當(dāng)x=0時,y=﹣2;∵A(0,﹣2).
設(shè)直線AB的解析式為y=kx+b,則:,解得
∴直線AB解析式為y=2x﹣2.
∵點(diǎn)C為直線y=2x﹣2與拋物線y=x2﹣2的交點(diǎn),
則點(diǎn)C的橫、縱坐標(biāo)滿足:,
解得、(舍)∴點(diǎn)C的坐標(biāo)為(4,6).
(2)直線x=3分別交直線AB和拋物線C1于D.E兩點(diǎn).
∵yD=4,yE=,∴DE=
∴FG=DE=4:3,
∴FG=2.
∴直線x=a分別交直線AB和拋物線C1于F、G兩點(diǎn).
∴yF=2a﹣2,yG=a2﹣2×FG=|2a﹣a2|=2,
解得:a1=2,a2=﹣2+2,a3=2﹣2
(3)設(shè)直線MN交y軸于T,過點(diǎn)N做NH⊥y軸于點(diǎn)H;
設(shè)點(diǎn)M的坐標(biāo)為(t,0),
拋物線C2的解析式為y=x2﹣2﹣m;
∴0=﹣t2﹣2﹣m,
∴﹣2﹣m=﹣t2
∴y=x2t2,
∴點(diǎn)P坐標(biāo)為(0,﹣t2).
∵點(diǎn)N是直線AB與拋物線y=x2t2的交點(diǎn),
則點(diǎn)N的橫、縱坐標(biāo)滿足:,
解得(舍)
∴N(2﹣t,2﹣2t).NQ=2﹣2t,MQ=2﹣2t,∴MQ=NQ,
∴∠MNQ=45°.
∴△MOT、△NHT均為等腰直角三角形,
∴MO=OT,HT=HN×OT=4,NT=﹣,NH=(2﹣t),PT=﹣t+t2
∵PN平分∠MNQ,∴PT=NT,
∴﹣t+t2=(2﹣t),
∴t1=﹣2,t2=2(舍)
﹣2﹣m=﹣t2=﹣(﹣22
∴m=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢)如圖1,點(diǎn)A為拋物線C1:y=
12
x2-2的頂點(diǎn),點(diǎn)B的坐標(biāo)為(1,0)直線AB交拋物線C1于另一點(diǎn)C
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=3交直線AB于點(diǎn)D,交拋物線C1于點(diǎn)E,平行于y軸的直線x=a交直線AB于F,交拋物線C1于G,若FG:DE=4:3,求a的值;
(3)如圖2,將拋物線C1向下平移m(m>0)個單位得到拋物線C2,且拋物線C2的頂點(diǎn)為點(diǎn)P,交x軸于點(diǎn)M,交射線BC于點(diǎn)N.NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖1,點(diǎn)A為拋物線C1的頂點(diǎn),點(diǎn)B的坐標(biāo)為(1,0),直線AB交拋物線C1于另一點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=3交直線AB于點(diǎn)D,交拋物線C1于點(diǎn)E,平行于y軸的直線x=a
交直線AB于F,交拋物線C1于G,若FG:DE=4∶3,求a的值;
(3)如圖2,將拋物線C1向下平移m(m>0)個單位得到拋物線C2,且拋物線C2的頂點(diǎn)為點(diǎn)P,交x軸
于點(diǎn)M,交射線BC于點(diǎn)N,NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時,求m的值.

圖1                             圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,點(diǎn)A為拋物線C1:y=x2-2的頂點(diǎn),點(diǎn)B的坐標(biāo)為(1,0)直線AB交拋物線C1于另一點(diǎn)C
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=3交直線AB于點(diǎn)D,交拋物線C1于點(diǎn)E,平行于y軸的直線x=a交直線AB于F,交拋物線C1于G,若FG:DE=4:3,求a的值;
(3)如圖2,將拋物線C1向下平移m(m>0)個單位得到拋物線C2,且拋物線C2的頂點(diǎn)為點(diǎn)P,交x軸于點(diǎn)M,交射線BC于點(diǎn)N.NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,點(diǎn)A為拋物線C1的頂點(diǎn),點(diǎn)B的坐標(biāo)為(1,0),直線AB交拋物線C1于另一點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)如圖1,平行于y軸的直線x=3交直線AB于點(diǎn)D,交拋物線C1于點(diǎn)E,平行于y軸的直線x=a

交直線AB于F,交拋物線C1于G,若FG:DE=4∶3,求a的值;

(3)如圖2,將拋物線C1向下平移m(m>0)個單位得到拋物線C2,且拋物線C2的頂點(diǎn)為點(diǎn)P,交x軸

于點(diǎn)M,交射線BC于點(diǎn)N,NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時,求m的值.

圖1                              圖2

 

查看答案和解析>>

同步練習(xí)冊答案