如圖,拋物線y=ax2-5ax+4a與x軸相交于點(diǎn)A、B,且過點(diǎn)C(5,4).

(1)求a的值和該拋物線頂點(diǎn)P的坐標(biāo).

(2)請你設(shè)計(jì)一種平移的方法,使平移后拋物線的頂點(diǎn)落在第二象限,并寫出平移后拋物線的解析式.

答案:
解析:

  解:(1)把點(diǎn)C(5,4)代入拋物線y=ax2-5ax+4a,得25a-25a+4a=4,

  解得a=1.

  所以該拋物線的解析式為y=x2-5x+4.

  因?yàn)閥=x2-5x+4=(x-)2,

  所以頂點(diǎn)坐標(biāo)為P(,-).

  (2)(答案不唯一,合理即正確)

  如先向左平移3個單位,再向上平移4個單位,

  得到的拋物線解析式為

  y=(x-+3)2+4=(x+)2

  即y=x2+x+2.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年江西省南昌市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P,且與拋物線y2=ax2-ax-1,相交于A,B兩點(diǎn).

(1)求a值;

(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;

(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點(diǎn)Q(x,0),且xA≤≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為何值時,線段CD有最大值?其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點(diǎn)A、B,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.

1.⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).

2.⑵求DPAB的面積;

3.⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點(diǎn)AB,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.

【小題1】⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省興化市九年級上學(xué)期期末四校聯(lián)考數(shù)學(xué)卷 題型:解答題

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點(diǎn)A、B,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.

【小題1】⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省興化市九年級上學(xué)期期末四校聯(lián)考數(shù)學(xué)卷 題型:解答題

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點(diǎn)A、B,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.

1.⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).

2.⑵求DPAB的面積;

3.⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

 

查看答案和解析>>

同步練習(xí)冊答案