(2012•盧灣區(qū)一模)如圖,在△ABC中,MN∥AC,直線MN將△ABC分割成面積相等的兩部分.將△BMN沿直線MN翻折,點(diǎn)B恰好落在點(diǎn)E處,連接AE,若AE∥CN,則AE:NC=
2
:1
2
:1
分析:利用翻折變換的性質(zhì)得出BE⊥MN,BE⊥AC,進(jìn)而利用相似三角形的判定與性質(zhì)得出對(duì)應(yīng)邊之間的比值與高之間關(guān)系,即可得出答案.
解答:解:連接BE,交MN于點(diǎn)I,交AG于點(diǎn)Z,
∵將△BMN沿直線MN翻折,點(diǎn)B恰好落在點(diǎn)E處,
∴BE⊥MN于點(diǎn)I,
∵M(jìn)N∥AC,
∴BE⊥AC于點(diǎn)Z,
設(shè)△EMN與邊AC交于點(diǎn)F、G∵M(jìn)N∥AC,
∴△BMN∽△BAC,
∴(BI:BF)2 =S△BMN:S△BAC=1:2,
∴BI:BZ=1:
2
,
∴ZI:BI=(
2
-1):1,
∵△EMN是由△BMN翻折得到,
∴△EMN≌△BMN,
∴EI=BI,
∴ZI:EI=(
2
-1):1,
ZI+EZ
ZI
=
1
2
-1
=
2
+1,
∴1+
EZ
ZI
=
2
+1,
∴EZ:ZI=
2
:1,
∵AC∥MN,AE∥NC,
EZ
ZI
=
EG
GN
=
AE
NC

EG
GN
=
2
1
,
∴AE:NC=
2
:1,
故答案為:
2
:1.
點(diǎn)評(píng):此題主要考查了翻折變換的性質(zhì)以及相似三角形的判定與性質(zhì)和比例的性質(zhì),根據(jù)已知得出BE⊥MN,BE⊥AC,以及
EZ
ZI
=
EG
GN
=
AE
NC
是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)在矩形ABCD中,AB=4,BC=3,E是AB邊上一點(diǎn),EF⊥CE交AD于點(diǎn)F,過(guò)點(diǎn)E作∠AEH=∠BEC,交射線FD于點(diǎn)H,交射線CD于點(diǎn)N.
(1)如圖a,當(dāng)點(diǎn)H與點(diǎn)F重合時(shí),求BE的長(zhǎng);
(2)如圖b,當(dāng)點(diǎn)H在線段FD上時(shí),設(shè)BE=x,DN=y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)連接AC,當(dāng)△FHE與△AEC相似時(shí),求線段DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)若cosA=
3
2
,則∠A的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)若△ABC∽△DEF,頂點(diǎn)A、B、C分別與D、E、F對(duì)應(yīng),且AB:DE=1:4,則這兩個(gè)三角形的面積比為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)對(duì)于函數(shù)y=
1
3
(x-1)2+2
,下列結(jié)論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)已知矩形的對(duì)角線AC、BD相交于點(diǎn)O,若
BC
=
a
,
DC
=
b
,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案