【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點E為AB的中點,連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時,四邊形DCBE是平行四邊形.
【答案】
(1)證明:連結(jié)CE.
∵點E為Rt△ACB的斜邊AB的中點,
∴CE= AB=AE.
∵△ACD是等邊三角形,
∴AD=CD.
在△ADE與△CDE中, ,
∴△ADE≌△CDE(SSS),
∴∠ADE=∠CDE=30°.
∵∠DCB=150°,
∴∠EDC+∠DCB=180°.
∴DE∥CB.
(2)解:當AC= AB或AB=2AC時,四邊形DCBE是平行四邊形,
理由:∵AC= AB,∠ACB=90°,
∴∠B=30°,
∵∠DCB=150°,
∴∠DCB+∠B=180°,
∴DC∥BE,又∵DE∥BC,
∴四邊形DCBE是平行四邊形.
【解析】(1)首先連接CE,根據(jù)直角三角形的性質(zhì)可得CE= AB=AE,再根據(jù)等邊三角形的性質(zhì)可得AD=CD,然后證明△ADE≌△CDE,進而得到∠ADE=∠CDE=30°,再有∠DCB=150°可證明DE∥CB;(2)當AC= AB或AB=2AC時,四邊形DCBE是平行四邊形.根據(jù)(1)中所求得出DC∥BE,進而得到四邊形DCBE是平行四邊形.
【考點精析】本題主要考查了等邊三角形的性質(zhì)和平行四邊形的判定的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是AC和BC中點.
(1)若點C恰好是AB的中點,則DE=_______cm;
(2)若AC=4cm,求DE的長;
(3)試說明無論AC取何值(不超過12cm),DE的長不變;
(4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關(guān).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(1,2),B(2,1),C(﹣1,﹣3).D(﹣2,3),其中不可能與點E(1,3)在同一函數(shù)圖象上的一個點是( )
A. 點A B. 點B C. 點C D. 點D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個袋中有3張形狀大小完全相同的卡片,編號為1,2,3,先任取一張,將其編號記為m,再從剩下的兩張中任取一張,將其編號記為n.
(1)請用樹狀圖或者列表法,表示事件發(fā)生的所有可能情況;
(2)求關(guān)于x的方程有兩個不相等實數(shù)根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com