二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①abc>0,②4a+b=0,③a+b+c=0,④b2-4ac>0,其中正確的個數(shù)是( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:①由圖象開口向上可得到a>0,與y軸交點在負半軸得到c<0,對稱軸x=->0得到b<0,進行判定;
②由二次函數(shù)的對稱軸解答判定;
③由當(dāng)x=1時,y<0即可得到a+b+c<0,由此判定;
④由圖象與x軸有兩個交點得到b2-4ac>0,可判定;
解答:解:①∵圖象開口向上,a>0,與y軸交點在負半軸c<0,對稱軸x=->0,a>0,得b<0,因此abc>0,正確;
②由x=-1和x=5可得-==2,整理得4a+b=0,正確;
③當(dāng)x=1時,y<0,故a+b+c<0,錯誤.
④圖象與x軸有兩個交點,ax2+bx+c=0由兩個不相等的實數(shù)根,b2-4ac>0,正確;
故選C.
點評:解答本題要注意函數(shù)和方程的關(guān)系,關(guān)鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號的確定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網(wǎng)點C(0,
3
)
,當(dāng)x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當(dāng)運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時,y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案