分析 (1)連CF,OF.由AB弧長(zhǎng)等于AF弧長(zhǎng),O為圓心,根據(jù)垂徑定理的推論得出點(diǎn)G是BF的中點(diǎn),OG⊥BF.根據(jù)圓周角定理得出CF⊥BF,那么OG∥CF,∠AOB=∠FCB,根據(jù)等角的余角相等得出∠DAO=∠FBC;
(2)連CF,AC,AB.由在同圓中等弧對(duì)的圓周角相等得到∠BCA=∠ACF,∠ACF=∠ABF,由同角的余角相等得到∠BAD=∠BCA,所以∠ABF=∠BAD,即BE=AE.
解答 證明:(1)連CF,OF.
∵AB弧長(zhǎng)等于AF弧長(zhǎng),O為圓心,
∴點(diǎn)G是BF的中點(diǎn),OG⊥BF.
∵BC是半圓O的直徑,
∴CF⊥BF,
∴OG∥CF,
∴∠AOB=∠FCB,
∴∠DAO=90°-∠AOB,∠FBC=90°-∠FCB,
∴∠DAO=∠FBC;
(2)連CF,AC,AB,
∵AB弧長(zhǎng)等于AF弧長(zhǎng),
∴∠BCA=∠ACF,∠ACF=∠ABF,
∵BC為圓的直徑,
∴∠BAC=90°,
∴∠ABC+∠ACB=90°,
又AD⊥BC,∴∠ADB=90°,
∴∠ABC+∠BAD=90°,
∴∠BAD=∠BCA,
∴∠ABF=∠BAD,
即BE=AE.
點(diǎn)評(píng) 本題考查了垂徑定理的推論,圓周角定理,余角的性質(zhì),準(zhǔn)確作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,-1) | B. | (-1,1) | C. | (-1,-3) | D. | (-1,3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com