【題目】在學(xué)習(xí)了利用尺規(guī)作一個(gè)角的平分線后,愛(ài)鉆研的小聰發(fā)現(xiàn),只有一把刻度尺也可以作出一個(gè)角的平分線.她是這樣作的(如圖)

(1)分別在∠AOB的兩邊OA,OB上各取一點(diǎn)C,D,使得OCOD.

(2)連結(jié)CD,并量出CD的長(zhǎng)度,取CD的中點(diǎn)E.

(3)過(guò)O,E兩點(diǎn)作射線OE,則OE就是∠AOB的平分線.

請(qǐng)你說(shuō)出小聰這樣作的理由.

【答案】見(jiàn)解析

【解析】試題分析:本題考查了全等三角形的判定與性質(zhì)及角平分線的定義.由作法可知OCOD,CE=CE從而根據(jù)根據(jù)全等三角形的判定方法“SSS”,可證△OCE≌△ODE,再由全等三角形的性質(zhì)可得∠COEDOE,從而OE平分AOB.

解析:∵ECD的中點(diǎn),∴CEDE.

OCEODE中,

,

∴△OCE≌△ODE(SSS)

∴∠COEDOE,即OE是∠AOB的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各題運(yùn)算正確的是( )
A.﹣2mn+5mn=﹣7mn
B.6a+a=6a2
C.m+m2=m3
D.3ab﹣5ba=﹣2ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖矩形ABCD中,AD=5,AB=7,點(diǎn)E為DC上一個(gè)動(dòng)點(diǎn),把ADE沿AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)D落在ABC的角平分線上時(shí),DE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)凸多邊形的每一個(gè)內(nèi)角都等于140°,那么從這個(gè)多邊形的一個(gè)頂點(diǎn)引出的對(duì)角線條數(shù)是(

A. 5 B. 6 C. 9 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程(a﹣2)x|a|1+6=0是關(guān)于x的一元一次方程,則a的值為(
A.±2
B.﹣2
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式a2-2a=______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點(diǎn)B、C、G在同一條直線上,M是線段AE的中點(diǎn),DM的延長(zhǎng)線交EF于點(diǎn)N,連接FM,易證:DM=FM,DM⊥FM(無(wú)需寫(xiě)證明過(guò)程)

(1)如圖2,當(dāng)點(diǎn)B、C、F在同一條直線上,DM的延長(zhǎng)線交EG于點(diǎn)N,其余條件不變,試探究線段DM與FM有怎樣的關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明;

(2)如圖3,當(dāng)點(diǎn)E、B、C在同一條直線上,DM的延長(zhǎng)線交CE的延長(zhǎng)線于點(diǎn)N,其余條件不變,探究線段DM與FM有怎樣的關(guān)系?請(qǐng)直接寫(xiě)出猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在-32,-1,3這四個(gè)數(shù)中,比-2小的數(shù)是

A. 3B. 2C. 1D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案