【題目】為做好漢江防汛工作,防汛指揮部決定對一段長為2500m重點堤段利用沙石和土進行加固加寬.專家提供的方案是:使背水坡的坡度由原來的11變?yōu)?/span>11.5,如圖,若CDBA,CD=4米,鉛直高DE=8米.

1)求加固加寬這一重點堤段需沙石和土方數(shù)是多少?

2)某運輸隊承包這項沙石和土的運送工程,根據施工方計劃在一定時間內完成,按計劃工作5天后,增加了設備,工效提高到原來的1.5倍,結果提前了5天完成任務,問按原計劃每天需運送沙石和土多少m3?

【答案】1)加固加寬這段長為2500m重點堤段需要沙石和土為120000m3;(2)該運輸隊原計劃每天運送沙石和土6000m3

【解析】

1)過點CCFAEF,則四邊形CDEF是矩形,CFBF=1:1.5,BF=12m,故BA=12m4m,;(2)設該運輸隊原計劃每天運送沙石和土m3,則工效提高后每天運送沙石和土1.5m3 ,.

1)∵DEAE=1:1,且DE=8m,∴AE=8m,

過點CCFAEF,則四邊形CDEF是矩形,∴FE=CD=4m,CF=DE=8m

CFBF=1:1.5,∴BF=12m

BA=12m4m8m,

==m2

加固加寬這段長為2500m重點堤段需要沙石和土:m3

2)設該運輸隊原計劃每天運送沙石和土m3

則工效提高后每天運送沙石和土1.5m3

解得:

檢驗:經檢驗知,是原方程的解

答:該運輸隊原計劃每天運送沙石和土6000m3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點F在邊BC上,且AFAD,過點DDEAF,垂足為點E

1)求證:DEAB

2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BFFC1,求扇形ABG的面積.(結果保留π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在RtABC中,∠C=90°,點OAB上,以O為圓心,OA長為半徑的圓與AC、AB分別交于點DE,且∠CBD=A
1)觀察圖形,猜想BD與⊙O的位置關系;
2)證明第(1)題的猜想

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,OBD的中點,則下列結論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是(

A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB5,AD3.點ECD上的動點,以AE為直徑的⊙OAB交于點F,過點FFGBE于點G

1)若ECD的中點時,證明:FG是⊙O的切線

2)試探究:BE能否與⊙O相切?若能,求出此時DE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?

(參考數(shù)據:sin37°≈0.60cos37°≈0.80,tan37°≈0.75,≈1.41≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為提高學生參與體育活動的積極性,圍繞“你喜歡的體育運動項目只寫一項”這一問題,對初一新生進行隨機抽樣調查下面是根據調查結果繪制成的統(tǒng)計圖不完整).

請你根據圖中提供的信息解答下列問題

(1)本次抽樣調查一共調查調查了多少名學生?

(2)根據條形統(tǒng)計圖中的數(shù)據求扇形統(tǒng)計圖中“最喜歡足球運動”的學生數(shù)對應扇形的圓心角度數(shù)

(3)請將條形圖補充完整

(4)若該市2017年約有初一新生21000,請你估計全市本屆學生中“最喜歡足球運動”的學生有多少人

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2(m1)x(m21)0

(1)若該方程有實數(shù)根,求m的值.

(2)對于函數(shù)y1x2(m1)x(m21),當x1時,y1隨著x的增大而增大.

①求m的范圍.

②若函數(shù)y22xn與函數(shù)交于y軸上同一點,求n的最小值.

查看答案和解析>>

同步練習冊答案