(2003•泰州)點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線于點A,連接OA.
(1)如圖甲,當點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化?若不變,請求出Rt△AOP的面積;若改變,試說明理由;
(2)如圖乙,在x軸上的點P的右側有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于點C,設△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關系是S1______S2(選填“>”、“<”、“=”);
(3)如圖丙,AO的延長線與雙曲線的另一個交點為F,F(xiàn)H垂直于x軸,垂足為點H,連接AH,PF,試證明四邊形APFH的面積為一個常數(shù).

【答案】分析:(1)本題還可依據(jù)比例系數(shù)k的幾何意義,得出兩個三角形的面積都等于|k|=,因而當點P在x軸的正方向上運動時,Rt△AOP的面積大小不變;
(2)根據(jù)(1)可以得到△BDO的面積,因而S1>S2
解答:解:(1)Rt△AOP的面積不變,總等于;

(2)根據(jù)△AOP的面積等于S1,△BOD的面積大于S2,S1>S2

(3)設A的坐標是(a,b),根據(jù)反比例函數(shù)是中心對稱圖形,因而F點的坐標是(-a,-b),則AP=b,HP=2a,則四邊形APFH的面積是2ab,據(jù)(a,b)在雙曲線的圖象上,因而ab=1,則四邊形APFH的面積是2ab=2.
點評:本題考查函數(shù)圖象交點坐標的求法及反比例函數(shù)的比例系數(shù)k與其圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即S=|k|.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•泰州)已知:如圖,拋物線y=x2-(m+2)x+3(m-1)與x軸的兩個交點M、N在原點的兩側,點N在點M的右邊,直線y1=-2x+m+6經(jīng)過點N,交y軸于點F.
(1)求這條拋物線和直線的解析式.
(2)又直線y2=kx(k>0)與拋物線交于兩個不同的點A、B,與直線y1交于點P,分別過點A、B、P作x軸的垂線,垂足分別是C、D、H.
①試用含有k的代數(shù)式表示;
②求證:
(3)在(2)的條件下,延長線段BD交直線y1于點E,當直線y2繞點O旋轉(zhuǎn)時,問是否存在滿足條件的k值,使△PBE為等腰三角形?若存在,求出直線y2的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年江蘇省泰州市中考數(shù)學試卷(解析版) 題型:解答題

(2003•泰州)已知:如圖,拋物線y=x2-(m+2)x+3(m-1)與x軸的兩個交點M、N在原點的兩側,點N在點M的右邊,直線y1=-2x+m+6經(jīng)過點N,交y軸于點F.
(1)求這條拋物線和直線的解析式.
(2)又直線y2=kx(k>0)與拋物線交于兩個不同的點A、B,與直線y1交于點P,分別過點A、B、P作x軸的垂線,垂足分別是C、D、H.
①試用含有k的代數(shù)式表示
②求證:
(3)在(2)的條件下,延長線段BD交直線y1于點E,當直線y2繞點O旋轉(zhuǎn)時,問是否存在滿足條件的k值,使△PBE為等腰三角形?若存在,求出直線y2的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2003•泰州)在Rt△ABC的直角邊AC邊上有一動點P(點P與點A,C不重合),過點P作直線截得的三角形與△ABC相似,滿足條件的直線最多有( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2003•泰州)點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線于點A,連接OA.
(1)如圖甲,當點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化?若不變,請求出Rt△AOP的面積;若改變,試說明理由;
(2)如圖乙,在x軸上的點P的右側有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于點C,設△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關系是S1______S2(選填“>”、“<”、“=”);
(3)如圖丙,AO的延長線與雙曲線的另一個交點為F,F(xiàn)H垂直于x軸,垂足為點H,連接AH,PF,試證明四邊形APFH的面積為一個常數(shù).

查看答案和解析>>

同步練習冊答案