如圖在梯形ABCD中AB=CD=5,AD=7,BC=13,E點在AD上,且AE=4,動點P從D出發(fā)沿著梯形的周界依次經(jīng)過C、B最后到達A,設(shè)此過程中P點走過的距離為x,△APE的面積為y,把y表示成x的函數(shù),并且畫出圖象.

解:這道題可以分三種情況討論:
①當(dāng)P在CD上時,0≤x≤5,過點P作PH⊥AD交AD的延長線與H,過點D作DM⊥BC交BC與點M,

已知AD=7,BC=13,易知:MC==3,
又AB=CD=5,根據(jù)勾股定理可得DM=4,
∵AD∥BC,
∴∠PDH=∠C,
∴PH=PD•sin∠C=x•sin∠C==x,
∴y=AE•PH=x.
②當(dāng)P在BC上時,5≤x≤18,y=•AE•DM=8,
③當(dāng)P在AB上時,18≤x≤23,AP=(AB+BC+CD)-x=23-x,
由①同理可得:y=×4×(23-x)×sin∠C=(184-8x).
所以y=,
綜上得所求的函數(shù)圖象為:
分析:此題分三種情況:①當(dāng)P在CD上時,②當(dāng)P在BC上時,③當(dāng)P在AB上時,分別求出解析式,根據(jù)解析式畫出圖象即可.
點評:本題考查了動點問題的函數(shù)圖象,解題關(guān)鍵是對等腰梯形及三角形面積公式的熟練運用,難度適中,注意要分三種情況:P在CD上、P在BC上和P在AB上進行討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在梯形ABCD中,AB=DC=10cm,AC與BD相交于G,且∠AGD=60°,設(shè)E為CG的中點,F(xiàn)為AB的中點,則EF的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,動點P從A出發(fā)以2厘米/秒的速度沿AB方向向點B運動,動點Q從點B出精英家教網(wǎng)發(fā)以3厘米/秒的速度沿B?C?D方向向點D運動,兩個動點同時出發(fā),當(dāng)其中一個動點到達終點時,另一個動點也隨之停止.設(shè)動點運動的時間為t秒.
(1)求邊BC的長;
(2)當(dāng)t為何值時,PC與BQ相互平分;
(3)連接PQ,設(shè)△PBQ的面積為y,探求y與t的函數(shù)關(guān)系式,求t為何值時,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在梯形ABCD中,AD∥BC,E是梯形內(nèi)一點,ED⊥AD,∠EBC=∠EDC,∠ECB=45°.
(1)求證:BE=CD;
(2)若梯形ABCD為等腰梯形且DE=3,tan∠DCB=4,試求四邊形ABED的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•宣城模擬)我們知道連接三角形兩邊中點的線段叫做三角形的中位線;通過證明可以得到“三角形的中位線平行于三角形的第三邊,且等于第三邊的一半”類似三角形中位線,我們把連接梯形兩腰中點的線段叫做梯形的中位線.如圖在梯形ABCD中,AD∥BC,點E,F(xiàn)分別是AB、CD的中點,觀察EF的位置,聯(lián)想三角形中位線的性質(zhì),你能發(fā)現(xiàn)梯形的中位線有什么性質(zhì)?證明你的結(jié)論.
(2)如果點E分線段AB為
AE
EB
=
1
3
,EF∥BC交CD于F,AD=3,BC=5,請你利用第(1)的結(jié)論求出EF=
3.5
3.5
(直接填寫結(jié)果);
(3)如果點E分線段AB為
AE
EB
=
m
n
,EF∥BC交CD 于F,AD=a,BC=b,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在梯形ABCD中,AD∥BC,∠B=∠C,DE交BC于點E,AD=BE.
(1)AB=DE嗎?為什么?
(2)梯形ABCD是等腰梯形嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案