【題目】如圖,一個半徑為18 cm的圓,從中心挖去一個正方形,當挖去的正方形的邊長由小變大時,剩下部分的面積也隨之發(fā)生變化.
(1)若挖去的正方形邊長為x(cm),剩下部分的面積為y(cm2),則y與x之間的關(guān)系式是什么?
(2)當挖去的正方形的邊長由1 cm變化到9 cm時,剩下部分的面積由____變化到____.
【答案】 (324π-1)cm2 (324π-81)cm2
【解析】分析:(1)剩下部分的面積y就是大圓的面積與挖去的正方形的面積的差;
(2)在函數(shù)解析式中分別求出半徑x,分別是1cm與9cm時,面積的值,即可求解.
本題解析:
(1)y與x之間的關(guān)系式為:y= ;
(2)當挖去圓的半徑為1cm時,由(1)中求出的函數(shù)關(guān)系式可得,圓環(huán)面積:y=324π-1=(323π-1)cm;
當挖去圓的半徑為9cm時,圓環(huán)面積y=324π-9=(243π-81)cm,所以圓環(huán)面積由變化(323π-1)cm到(243π-81)cm.
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,同底數(shù)冪的乘法法則為:am·an=am+n(其中a≠0,m,n為正整數(shù)),類似地我們規(guī)定關(guān)于任意正整數(shù)m,n的一種新運算:h(m+n)=h(m)·h(n),請根據(jù)這種新運算填空:
(1)若h(1)=,則h(2)=________;
(2)若h(1)=k(k≠0),則h(n)·h(2017)=________(用含n和k的代數(shù)式表示,其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在真角坐標系中,矩形0ABC的頂點A,C在坐標軸上,點B(4,2);過點D(0,3)和E(6,0)的直線分別與AB、BC交于點M、N.
(1)求直線DE的函數(shù)表達式和點M,N的坐標;
(2)若函數(shù)y=(k≠0,k為常數(shù))經(jīng)過點M,求該函數(shù)的表達式,并判定點N是否在該函數(shù)的圖象上:
(3)求△OMN的面積S;
(4)若函教y=(k≠0,k為常數(shù))的圖象與△BMN沒有交點,清楚直接寫出k的取值范圈,不需解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.
△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點是等邊內(nèi)的任一點,連接,,.
如圖,已知,,將繞點按順時針方向旋轉(zhuǎn),使與重合,得.
()的度數(shù)是__________.
()用等式表示線段,,之間的數(shù)量關(guān)系,并證明.(圖為備用圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中(∠B≠∠C),AB=8 cm,BC=16 cm,點P從點A開始沿邊AB向點B以2 cm/s的速度移動,點Q從點B開始沿邊BC向點C以4 cm/s的速度移動,如果點P、Q分別從點A、B同時出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在3×3的正方形網(wǎng)格(每個小正方形的邊長均為1)中有四個格點A,B,C,D,以其中一點為原點,網(wǎng)格線所在直線為坐標軸(水平線為橫軸),建立平面直角坐標系,使其余三個點中存在兩個點關(guān)于一條坐標軸對稱.
(1)原點是 (填字母A,B,C,D );
(2)若點P在3×3的正方形網(wǎng)格內(nèi)的坐標軸上,且與四個格點A,B,C,D,中的兩點能構(gòu)成面積為1的等腰直角三角形,則點P的坐標為 (寫出可能的所有點P的坐標)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點P在A,B兩點之間運動,問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點P在A,B兩點外側(cè)運動,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;
(2)問題解決:
如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證BE+CF>EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com