分析 延長AE、BC交于點(diǎn)F.根據(jù)同角的余角相等,得∠DBC=∠FAC;由ASA證明△BCD≌△ACF,得出AF=BD,AE=$\frac{1}{2}$AF,由線段垂直平分線的性質(zhì)DCAB=BF,再根據(jù)等腰三角形的三線合一得出BD是∠ABC的角平分線,由角平分線的性質(zhì)定理即可得出結(jié)論.
解答 證明:延長AE、BC交于點(diǎn)F.如圖所示:
∵AE⊥BE,
∴∠BEF=90°,
又∠ACF=∠ACB=90°,
∴∠DBC+∠AFC=∠FAC+∠AFC=90°,
∴∠DBC=∠FAC,
在△ACF和△BCD中,$\left\{\begin{array}{l}{∠ACF=∠BCD=90°}&{\;}\\{AC=BC}&{\;}\\{∠FAC=∠DBC}&{\;}\end{array}\right.$,
∴△ACF≌△BCD(ASA),
∴AF=BD.
又AE=$\frac{1}{2}$BD,
∴AE=$\frac{1}{2}$AF,即點(diǎn)E是AF的中點(diǎn).
∴AB=BF,
∴BD是∠ABC的角平分線,
∵∠C=90°,DF⊥AB于F,
∴CD=DF.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)、角平分線的性質(zhì)定理;熟練掌握等腰三角形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a>-b | B. | -b>0 | C. | b-a>0 | D. | -ab<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com