⊙O1、⊙O2相交于A和B兩點(diǎn),O1O2=8cm,CD是過A點(diǎn)的割線交⊙O1于C,交⊙O2于D,若CD∥O1O2,則CD等于      

答案:
解析:

16cm


提示:

過O1,O2做CD的垂線可以得到,CD是O1O2的2倍


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2相交于A、B兩點(diǎn),PQ切⊙O1于點(diǎn)P,交⊙O2于點(diǎn)Q、M,交AB的延長線于點(diǎn)N.若MN=1,MQ=3,則NP等于( 。
A、1
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,兩圓⊙O1和⊙O2相交于A、B兩點(diǎn),DBC和EAO1都是直線,且∠AO1C=140°,那么∠E=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖(1)兩個(gè)圓中,⊙O1與⊙O2相交于A、B,過B點(diǎn)的直線交兩圓于C、D,已知⊙O1與⊙O2的半徑分別為6和8,求證:AD:AC的比值為定值;
(2)如圖(2),D為線段AB延長線上的一點(diǎn),△ABC與△BDE都是等邊三角形,連接CE并延長,△ABC的外接圓⊙O交CF于M,請(qǐng)解答下列問題:
①求證:BE切⊙O于B;
②若CM=2,MF=6,求⊙O的半徑;
③過D作DG∥BE交EF于G,過G作GH∥DE交DF于H,設(shè)△ABC、△BDE、△DHG的面積分別為S1、S2、S3,試探究S1、S2、S3之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),C、A、D三點(diǎn)在一條直線上,CD的延長線交O1O2的延長線于P,∠P=30°,O1O2=2
3
,則CD=
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O1與⊙O2相交于A、B,CD⊥AB交⊙O1于C,交⊙O2于D,連接AC、AD.
(1)求證:AC、AD分別是⊙O1、⊙O2的直徑.
(2)連接O1O2、O2B,當(dāng)AC=AD時(shí),求證:四邊形O1CBO2為平行四邊形.
(3)當(dāng)AC=AD時(shí),過B的直線交
AC
于E,交
BD
于F(圖(2)),判定∠AEB與∠AFB的大小關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案