【題目】先填寫表,通過觀察后再回答問題:
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | x | 1 | y | 100 | …… |
(1)表格中,x=_________,y=_________
(2)從表格中探究a與數(shù)位的規(guī)律,并利用這個(gè)規(guī)律解決下面兩個(gè)問題:
①已知,則≈___________
②已知,若,用含m的代數(shù)式表示b,則b=___________
(3)試比較與a的大。ㄖ苯訉懗鼋Y(jié)果)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC擺放在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=3,OC=2,過點(diǎn)A的直線交矩形OABC的邊BC于點(diǎn)P,且點(diǎn)P不與點(diǎn)B、C重合,過點(diǎn)P作∠CPD=∠APB,PD交x軸于點(diǎn)D,交y軸于點(diǎn)E.
(1)若△APD為等腰直角三角形.
①求直線AP的函數(shù)解析式;
②在x軸上另有一點(diǎn)G的坐標(biāo)為(2,0),請?jiān)谥本AP和y軸上分別找一點(diǎn)M、N,使△GMN的周長最小,并求出此時(shí)點(diǎn)N的坐標(biāo)和△GMN周長的最小值.
(2)如圖2,過點(diǎn)E作EF∥AP交x軸于點(diǎn)F,若以A、P、E、F為頂點(diǎn)的四邊形是平行四邊形,求直線PE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥BC于點(diǎn)B,CD⊥BC于點(diǎn)C,AB=4,CD=6,BC=14,P為BC邊上一點(diǎn),試問BP為何值時(shí),以A,B,P為頂點(diǎn)的三角形與以P,C,D為頂點(diǎn)的三角形相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角板和直角三角板,,,
.
(1)如圖1,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動,將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)平分時(shí),求的度數(shù);
(2)在(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想與有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說明理由;
(3)如圖3,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動,將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)落在內(nèi)部時(shí),直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,甲、乙兩車分別從相距480km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,甲車到達(dá)C地后因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖2,結(jié)合圖象信息解答下列問題:
(1)乙車的速度是 千米/時(shí),乙車行駛的時(shí)間t= 小時(shí);
(2)求甲車從C地按原路原速返回A地的過程中,甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式;
(3)直接寫出甲車出發(fā)多長時(shí)間兩車相距80千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是平行四邊行ABCD的對角線AC上的 兩點(diǎn),AE=CF。
求證:(1)△ADF≌△CBE
(2)EB∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)A在原點(diǎn),B、C坐標(biāo)分別為B(3,0),C(2,2),將△ABC向左平移1個(gè)單位后再向下平移2單位,可得到△A′B′C′.
(1)請畫出平移后的△A′B′C′的圖形;
(2)寫出△A′B′C′各個(gè)頂點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
(3)當(dāng)點(diǎn)O運(yùn)動到何處,且△ABC滿足什么條件時(shí),四邊形AECF是正方形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com