已知(m,n)是拋物線y=ax2上的點(diǎn),求證:點(diǎn)(-m,n)也在拋物線y=ax2上.

證明:∵拋物線y=ax2的對稱軸是y軸,而點(diǎn)(m,n)與點(diǎn)(-m,n)也關(guān)于y軸對稱,
∴當(dāng)點(diǎn)(m,n)在拋物線y=ax2上時(shí),點(diǎn)(-m,n)也在拋物線y=ax2上.
分析:拋物線y=ax2關(guān)于y軸對稱,點(diǎn)(m,n)與點(diǎn)(-m,n)也關(guān)于y軸對稱,根據(jù)對稱性可證結(jié)論.
點(diǎn)評(píng):本題考查了拋物線y=ax2的對稱性,在解拋物線問題時(shí),需要熟練運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點(diǎn)離地面的距離OC為5米.以最高點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標(biāo)系,
求:(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍;
(2)有一輛寬2.8米,高1米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-
140
x2+10,為保護(hù)廊橋的安全,在該拋物線上距水面AB高為8米的點(diǎn)E,F(xiàn)處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是
 
米.(精確到1米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是龍游文昌大橋,橋身橫跨靈山江,橋下冬暖夏涼,常有船只停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處18m的漁船,試探索此船能否開到橋下?說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-
140
x2+10,為保護(hù)廊橋的安全,在該拋物線上距水面AB高為8米的點(diǎn)E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點(diǎn)離地面的距離OC為5米.以最高點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標(biāo)系.求:
(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍.
(2)有一輛寬2米,高2.5米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.2m寬的隔離帶,則該農(nóng)用貨車還能通過隧道嗎?

查看答案和解析>>

同步練習(xí)冊答案