【題目】周六上午,小亮去圖書館查資料,圖書館離家不遠(yuǎn),他步行去圖書館,查完資料后他又邊走邊轉(zhuǎn)去書店買書,在書店停留了幾分鐘后騎共享單車回家."已知小亮離家的距離()與離開家的時間()之間的關(guān)系如圖所示.請根據(jù)圖象回答下列問題:

1)小亮出發(fā)幾分鐘后到達(dá)圖書館?

2)小亮查完資料后步行的速度是多少?

3)小亮離開圖書館,幾點回到家?

【答案】110分鐘;(2(/);(31035

【解析】

1)根據(jù)題意和圖象解答即可;(2)根據(jù)“速度×?xí)r間=路程”解答即可;(3)根據(jù)圖象解答即可.

解:(1)由圖象可知,小亮出發(fā)10分鐘后到達(dá)圖書館;

2(米/分)

故小亮查完資料后步行的速度是: /

3)由圖象可知,小亮離開圖書館,經(jīng)過75-40=35分鐘回到家,

故小亮1000離開圖書館,1035回到家.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A、B兩點相距25kmC、D為兩村莊,DAABACBABB,已知DA15km,CB10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得CD兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線、相交于,,射線位置起始,繞點逆時針旋轉(zhuǎn),終邊與始邊形成的角度為.

問題1:若逆時針旋轉(zhuǎn)停止,則

1__________________時,平分;

2__________________時,;

3__________________時,;

問題2:若逆時針旋轉(zhuǎn)的速度為每秒,在勻速旋轉(zhuǎn)的同時,直線也從圖的位置開始繞點逆時針勻速旋轉(zhuǎn),旋轉(zhuǎn)速度為每秒,當(dāng)完成旋轉(zhuǎn)一周時,也同時停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時間為)秒.

1)旋轉(zhuǎn)時間為多少時,射線重合.請寫出求解過程.

2)觀察旋轉(zhuǎn)全過程,判斷旋轉(zhuǎn)時間為多少時,射線平分.請直接寫出的值.(注:指大于且小于的角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡再求值:當(dāng)a=9時,求a+的值,甲乙兩人的解答如下:

甲的解答為:原式=a+=a+(1-a)=1.

乙的解答為:原式=a+=a+(a-1)=2a-1=17.

兩種解答中,_____的解答是錯誤的,錯誤的原因是當(dāng)a=9時______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某電腦公司有A型、B型、C型三種型號的電腦,其價格分別為A型每臺6 000元,B型每臺4 000元,C型每臺2 500元,我市東坡中學(xué)計劃將100 500元錢全部用于該電腦公司購進(jìn)其中兩種不同型號的電腦共36臺,請你設(shè)計出幾種不同的購買方案供該校選擇,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,則函數(shù)y=mx2﹣mx(
A.有最大值
B.有最大值﹣
C.有最小值
D.有最小值﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有10名銷售業(yè)務(wù)員,去年每人完成的銷售額情況如表:

(1)10名銷售員銷售額的平均數(shù)、中位數(shù)和眾數(shù).(單位:萬元)

(2)為了調(diào)動員工積極性,公司準(zhǔn)備采取超額有獎措施,請問把標(biāo)準(zhǔn)定為多少萬元時最合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,ABCDEC關(guān)于點C成中心對稱,連接AE、BD.

(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說明你的理由.

(2)如果ABC的面積為5cm2 , 求四邊形ABDE的面積.

(3)當(dāng)∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案