精英家教網 > 初中數學 > 題目詳情
如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.
分析:首先由A點坐標為(8,0),B點坐標為(0,6),根據勾股定理,求得AB的長,又由C是線段AB的中點,求得BC的長,然后分別從①如圖1,若△PNC∽△OBA與②如圖2,若△PBC∽△ABO去分析求解即可求得答案.
解答:解:存在這樣的P點.理由如下:
∵∠AOB=90°,OA=8,OB=6;
∴AB=10.
∵C是線段AB的中點,
∴BC=5.
∵∠ABO是公共角,
①如圖1,若△PBC∽△OBA,
則需PB:OB=BC:BA,
PB
6
=
5
10
,
解得:PB=3,
∴P點的坐標為(0,3);
②如圖2,若△PBC∽△ABO,
∴PB:AB=BC:OB,
PB
10
=
5
6
,
解得:PB=
25
3

∴OP=PB-OB=
7
3
,
∴P點的坐標為(0,-
7
3
).
∴P(0,3)或(0,-
7
3
).
點評:此題考查了相似三角形的判定與性質、勾股定理以及平面直角坐標系中點的坐標特征等知識.此題難度適中,注意數形結合思想與分類討論思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、如圖在平面直角坐標系中,△AOB的頂點分別為A(2,0),O(0,0),B(0,4).
①△AOC與△AOB關于x軸成軸對稱,則C點坐標為
(0,-4)
;
②將△AOB繞AB的中點D逆時針旋轉90°得△EGF,則點A的對應點E的坐標為
(3,3)

③在圖中畫出△AOC和△EGF,△AOB與△EGF重疊的面積為
1
平方單位.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖在平面直角坐標系xOy中,點A的坐標為(2,0),以點A為圓心,2為半徑的圓與x軸交于O,B兩點,C為⊙A上一點,P是x軸上的一點,連接CP,將⊙A向上平移1個單位長度,⊙A與x軸交于M、N,與y軸相切于點G,且CP與⊙A相切于點C,∠CAP=60°.請你求出平移后MN和PO的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖在平面直角坐標系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,且點A(0,2),點C(-1,0),如圖所示點B在拋物線y=ax2+ax-2上.
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點A逆時針方向旋轉90°到達△AB′C′的位置,請寫出點B′坐標
(1,-1)
(1,-1)
,點C′坐標
(2,1)
(2,1)
;判斷點B′
,C′
(填“在”或“不”)在(2)中的拋物線上.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖在平面直角坐標系中,M為x軸上一點,⊙M交x軸于A、B兩點,交y軸于C、D兩點,P為
BC
上的一個動點,CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C點坐標;
(2)當點P在
BC
上運動時,線段AQ的長是否改變?若不變,請求出其長度;若改變,請說明理由.(提示:連接AC).
(3)當點P在
BC
上運動時,是否存在這樣的點P,使CQ所在直線經過點M?若存在請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案