【題目】如圖,已知,延長(zhǎng),使;延長(zhǎng),使;延長(zhǎng),使;連接、,得.的面積為,則的面積為( )

A.B.C.D.

【答案】C

【解析】

如圖所示:連接AE、CD,要求△DEF的面積,可以分三部分來(lái)計(jì)算,利用高一定時(shí),三角形的面積與高對(duì)應(yīng)的底成正比的關(guān)系進(jìn)行計(jì)算;利用已知△ABC的面積k計(jì)算與它同高的三角形的面積,然后把所求各個(gè)面積相加即可得出答案.

如圖所示:連接AE、CD

BDAB

SABCSBCDk

SACD2 k

AF3AC

FC4AC

SFCD4SACD4×2k8k

同理求得:

SACE2SABC2k

SFCE4SACE4×2k8k

SDCE2SBCD2×k2k

SDEFSFCDSFCESDCE8k8k2k18 k

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,甲、乙兩個(gè)容器內(nèi)都裝了一定數(shù)量的水,現(xiàn)將甲容器中的水勻速注入乙容器中.圖2中的線段AB,CD分別表示容器中的水的深度h(厘米)與注入時(shí)間t(分鐘)之間的函數(shù)圖象.下列結(jié)論錯(cuò)誤的是( )

A. 注水前乙容器內(nèi)水的高度是5厘米

B. 甲容器內(nèi)的水4分鐘全部注入乙容器

C. 注水2分鐘時(shí),甲、乙兩個(gè)容器中的水的深度相等

D. 注水1分鐘時(shí),甲容器的水比乙容器的水深5厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x22+m2=21,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,以點(diǎn)M(4,0)為圓心,MO為半徑的半圓交x軸于點(diǎn)A,P為半圓上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為直角頂點(diǎn)在OP上方作RtOPB,且OP=2PB,OB交半圓于點(diǎn)Q.

(1)當(dāng)P為半圓弧的中點(diǎn)時(shí),求OPB的面積.

(2)在運(yùn)動(dòng)過(guò)程中,求MB的最大值.

(3)在運(yùn)動(dòng)過(guò)程中,若點(diǎn)Q將線段OB分為1:2的兩部分,求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一直角三角形,一條線段兩點(diǎn)分別在上和過(guò)點(diǎn)且垂直于的射線上運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到上什么位置時(shí)才能和以為頂點(diǎn)的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是兩個(gè)等腰直角三角形,.連接的中點(diǎn),連接

(1)如圖,當(dāng)在同一直線上時(shí),求證:;

(2)如圖,當(dāng)時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AEBF,AC平分∠BAD,且交BF于點(diǎn)C,BD平分∠ABC,且交AE于點(diǎn)D,連接CD,求證:

1ACBD;

2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蘇科版九年級(jí)下冊(cè)數(shù)學(xué)課本65頁(yè)有這樣一道習(xí)題:

如圖1,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D.

(1)△ACD△CBD相似嗎?為什么?

(2)圖中還有幾對(duì)相似三角形?是哪幾對(duì)?

復(fù)習(xí)時(shí),小明提出了新的發(fā)現(xiàn):利用△ACD∽△CBD∽△ABC可以進(jìn)一步證明:

①CD2=ADBD,②BC2=BDAB,③AC2=ADAB.”

(1)請(qǐng)你按照小明的思路,選擇①、②、③中的一個(gè)進(jìn)行證明;

(2)小亮研究小明的發(fā)現(xiàn)時(shí),又驚喜地發(fā)現(xiàn),利用可以證明勾股定理,請(qǐng)你按照小亮思路完成這個(gè)證明;

(3)小麗也由小明發(fā)現(xiàn)的“CD2=ADBD”,進(jìn)一步發(fā)現(xiàn):已知線段a、b,可以用尺規(guī)作圖作出線段c,使c2=ab”,請(qǐng)你完成小麗的發(fā)現(xiàn).(不要求寫(xiě)出作法,請(qǐng)保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,A為⊙O的弦EF上的一點(diǎn),OB是和這條弦垂直的半徑,垂足為H,BA的延長(zhǎng)線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線與EF的延長(zhǎng)線相交于點(diǎn)D.

(1)求證:DA=DC;

(2)當(dāng)DF:EF=1:8,且DF=時(shí),求ABAC的值;

(3)將圖1中的EF所在直線往上平行移動(dòng)到⊙O外,如圖2的位置,使EF與OB,延長(zhǎng)線垂直,垂足為H,A為EF上異于H的一點(diǎn),且AH小于⊙O的半徑,AB的延長(zhǎng)線交⊙O于C,過(guò)C作⊙O的切線交EF于D.試猜想DA=DC是否仍然成立?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案