【題目】某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣和優(yōu)惠,在每個轉(zhuǎn)盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,區(qū)域?qū)?yīng)的優(yōu)惠方式如下,A1,A2A3區(qū)域分別對應(yīng)98折和7折優(yōu)惠,B1B2,B3,B4區(qū)域?qū)?yīng)不優(yōu)惠?本次活動共有兩種方式.

方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向折扣區(qū)域時,所購物品享受對應(yīng)的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;

方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.

1)若顧客選擇方式一,則享受優(yōu)惠的概率為   

2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.

【答案】1;(2

【解析】

1)根據(jù)題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;

2)根據(jù)題意可以畫出相應(yīng)的樹狀圖,從而可以求得相應(yīng)的概率.

解:(1)由題意可得,

顧客選擇方式一,則享受優(yōu)惠的概率為:,

故答案為:

2)樹狀圖如下圖所示,

則顧客享受折上折優(yōu)惠的概率是:,

即顧客享受折上折優(yōu)惠的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)B(,n).連接OB,若SAOB=1.

(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

(2)直接寫出不等式組 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象軸交于點(diǎn)兩點(diǎn);與軸交于點(diǎn);對稱軸為直線,點(diǎn)的坐標(biāo)為,則下列結(jié)論:①;②;③;④,⑤其中正確的結(jié)論個數(shù)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個蓄水池有甲、乙兩個注水管和一個排水管丙,三個水管均已關(guān)閉,已知乙注水管的注水速度為10/分.先打開乙注水管4分鐘,再打開甲注水管,甲、乙兩個水管均注水20分鐘.設(shè)甲注水管的工作時間為(分),甲注水管的注水量(升)與時間(分)的函數(shù)圖象為線段,乙注水管的注水量(升)與時間(分)的函數(shù)圖象為線段,如圖所示.

1)求甲注水管的總注水量;

2)求線段所對應(yīng)的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)乙注水管打開的16分鐘后,打開丙出水管.已知出水管丙的排水速度為20/分,求丙出水管打開多長時間能將蓄水池的水排空.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的外接圓為O,ADO的直徑,過點(diǎn)BO的切線,交DA的延長線于點(diǎn)E,連接BD,且∠E=∠DBC

1)求證:DB平分∠ADC

2)若EB10,CD9tanABE,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1中是小區(qū)常見的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會帶動踏板連桿繞軸旋轉(zhuǎn),從側(cè)面看圖2,立柱DE1.7m,AD0.3m,踏板靜止時從側(cè)面看與AE上點(diǎn)B重合,BE0.2m,當(dāng)踏板旋轉(zhuǎn)到C處時,測得∠CAB=42°,求此時點(diǎn)C距離地面EF的高度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了安全,請勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點(diǎn)C,從觀測點(diǎn)C測得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請說明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點(diǎn)A、B、C在圓周上,將剪下的扇形作為一個圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為( )

A. 12cm B. 20cm C. 24cm D. 28cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx2a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D2,3),tanDBA=

1)求拋物線的解析式;

2)已知點(diǎn)M為拋物線上一動點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;

3)在(2)中四邊形BMCA面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案