如圖,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點(diǎn)O為圓心的圓經(jīng)過A、D兩點(diǎn),且∠AOD=90°,則圓心O到弦AD的距離是( 。
| A. | cm | B. | cm | C. | cm | D. | cm |
考點(diǎn):
垂徑定理;全等三角形的性質(zhì);勾股定理;特殊角的三角函數(shù)值..
專題:
壓軸題.
分析:
易證△AOD是等腰直角三角形.則圓心O到弦AD的距離等于AD,所以可先求AD的長(zhǎng).
解答:
解:以BC上一點(diǎn)O為圓心的圓經(jīng)過A、D兩點(diǎn),則OA=OD,△AOD是等腰直角三角形.
易證△ABO≌△OCD,則OB=CD=4cm.
在直角△ABO中,根據(jù)勾股定理得到OA2=20;
在等腰直角△OAD中,過圓心O作弦AD的垂線OP.
則OP=OA•sin45°=cm.
故選B.
點(diǎn)評(píng):
此題涉及圓中求半徑的問題,此類在圓中涉及弦長(zhǎng)、半徑、圓心角的計(jì)算的問題,常把半弦長(zhǎng),半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com