如圖,在?ABCD中,M、N分別是邊BC、DC中點,AN=1,AM=2,且∠MAN=60°,則AB的長為   
【答案】分析:延長DC和AM交于E,根據(jù)平行四邊形的性質(zhì)可得出∠BAM=∠MEC,∠ABM=∠ECM,可證明△ABM≌△ECM,則AM=EM=2,由N為邊DC的中點,得NE=3NC=1.5AB,AB=NE,由余弦定理可解得EN,從而得出AB即可.
解答:解:延長DC和AM交于E,
∵ABCD為平行四邊形
∴AB∥CE
∴∠BAM=∠MEC,∠ABM=∠ECM,
∵M為BC的中點,
∴AM=ME,
∴△ABM≌△ECM,
∴AB=CD=CE,AM=EM=2,
∵N為邊DC的中點,
∴NE=3NC=1.5AB 即AB=NE,
∵AN=1,AE=2AM=4,且∠MAN=60°
∴由余弦定理EN2=AE2+AN2-2AE*ANcos60°=16+1-2×4×=13,
∴EN=,
∴AB=
故答案為
點評:本題考查了平行線的性質(zhì)、勾股定理以及三角形的中位線定理,是中考常見的題型,難度偏大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時,求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊答案