【題目】如圖,在中,.

⑴已知線段AB的垂直平分線與BC邊交于點P,連結(jié)AP,求證:

⑵以點B為圓心,線段AB的長為半徑畫弧,與BC邊交于點Q,連結(jié)AQ,若,求的度數(shù).

【答案】1)見解析;(2)∠B=36°.

【解析】

1)根據(jù)垂直平分線的性質(zhì),得到PA=PB,再由等腰三角形的性質(zhì)得到∠PAB=B,從而得到答案;

2)根據(jù)等腰三角形的性質(zhì)得到∠BAQ=BQA,設∠B=x,由題意得到等式∠AQC=B+BAQ=3x,即可得到答案.

1)證明:因為點PAB的垂直平分線上,

所以PA=PB

所以∠PAB=B,

所以∠APC=PAB+B=2B.

2)根據(jù)題意,得BQ=BA,

所以∠BAQ=BQA,

設∠B=x,

所以∠AQC=B+BAQ=3x,

所以∠BAQ=BQA=2x,

ABQ中,x+2x+2x=180°,

解得x=36°,即∠B=36°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于點,對稱軸為直線,與y軸的交點B之間包括這兩點下列結(jié)論:①;②當時,;③;④,其中正確的是  

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長均為1個單位的正方形網(wǎng)格圖中,建立了平面直角坐標系xOy,按要求解答下列問題:

(1)寫出△ABC三個頂點的坐標;

(2)畫出△ABC向右平移6個單位后得到的圖形△A1B1C1;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,己知ABC中,ACAB.試用直尺(不帶刻度)和圓規(guī)在圖中過點A作一條直線l,使點B關(guān)于直線l的對稱點在邊AC上(不要求寫作法,也不必說明理由,但要保留作圖痕跡);

2.如圖,方格紙中每個小正方形的邊長均為1,線段ABPQ的端點均在小正方形的頂點上.

①在線段PQ上確定一點C(點C在小正方形的頂點上).使ABC是軸對稱圖形,并在網(wǎng)格中畫出ABC;

②請直接寫出ABC的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC,ABC=90°,DAC邊中點,過D點作DEDF,交ABE,交BCF.1)求證:DE=DF.2)若AE=8,FC=6,求EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課中,小輝將邊長為3的兩個正方形放置在直線l上,如圖1,他連結(jié)AD、CF,經(jīng)測量發(fā)現(xiàn)AD=CF

1)他將正方形ODEFO點逆時針旋轉(zhuǎn)一定的角度,如圖2,試判斷ADCF還相等嗎?說明你的理由;

2)他將正方形ODEFO點逆時針旋轉(zhuǎn),使點E旋轉(zhuǎn)至直線l上,如圖3,請你求出CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,馬路的兩邊CF、DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A、B兩點分別表示車站和超市,CDAB所在直線互相平行,且都與馬路的兩邊垂直.馬路寬20米,A,B相距62米,∠A=67°,B=37°.求CDAB之間的距離.(參考數(shù)據(jù):sin67°,cos67°,tan67°,sn37°,cos37°,tan37°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,點D、EF分別在三邊上,EAC的中點,AD、BE、CF交于一點G,BD2DCSGEC3,SGDC4,則ABC的面積是( 。

A.25B..30C.35D.40

查看答案和解析>>

同步練習冊答案