【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結(jié)BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】

根據(jù)三角形中線的定義可得BD=CD,根據(jù)等底等高的三角形的面積相等判斷出①正確,然后利用邊角邊證明BDFCDE全等,可判斷出③正確;根據(jù)全等三角形對應角相等可得∠F=CED,再根據(jù)內(nèi)錯角相等,兩直線平行可得BFCE,可判斷出④正確.

BD=CD,點ABD、CD的距離相等,

∴△ABDACD面積相等,故①正確;

ADABC的中線,

BD=CD,BAD和∠CAD不一定相等,故②錯誤;

BDFCDE ,

∴△BDF≌△CDE,故③正確;

∴∠F=DEC,

BFCE,故④正確;

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點設(shè)AC=2BD=1,AP=x,CMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=50°,點D,E分別是邊AC,AB上的點(不與A,B,C重合),點P是平面內(nèi)一動點(P與D,E不在同一直線上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在邊BC上運動(不與點B和點C重合),如圖(1)所示,則∠1+∠2=________

(用α的代數(shù)式表示).

(2)若點PABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫出你的結(jié)論,并說明理由.

(3)當點P在邊CB的延長線上運動時,試畫出相應圖形,標注有關(guān)字母與數(shù)字,并寫出對應的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,將兩個完全相同的三角形紙片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如圖2,固定△ABC,使△DEC 繞點 C 旋轉(zhuǎn),當點 D 恰好落 AB 邊上時,

①填空:線段 DE AC 的位置關(guān)系是 ;

②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2

2)當△DEC 繞點 C 旋轉(zhuǎn)到如圖 3 所示的位置時,小明猜想(1 S1 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AECBC、CE 邊上的高,請你證明小明的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD的四邊都相等,等邊AEF的頂點E、F分別在BC、CD上,且AE=AB,則∠C=( 。

A. 100° B. 105° C. 110° D. 120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用“※”定義一種新運算:對于任意有理數(shù)ab,規(guī)定abab2+2ab+a

如:121×22+2×1×2+19

1)(﹣2)※3  ;

2)若316,求a的值;

3)若2xm,(x)※3n(其中x為有理數(shù)),試比較m,n的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2

方程 的兩個根是x1=1,x2=3

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸交于點,與正比例函數(shù)的圖象相交于點,且.

1)分別求出這兩個函數(shù)的解析式;

2)求的面積;

3)點軸上,且是等腰三角形,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.

(1)求證:ABM≌△BCN;

(2)求APN的度數(shù).

查看答案和解析>>

同步練習冊答案