【題目】如圖,的對角線,相交于點,點中點,若的周長為28,,則的周長為(

A.12B.17C.19D.24

【答案】A

【解析】

由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質可得OB=OD,再由ECD中點,即可得BE=BC,OE是△BCD的中位線,由三角形的中位線定理可得OEAB 再由ABCD的周長為28,BD10 即可求得AB+BC14,BO5,由此可得BE+OE7, 再由△OBE的周長為=BE+OE+BO即可求得△OBE的周長.

∵四邊形ABCD是平行四邊形,

OBD中點, OB=OD

又∵ECD中點,

BE=BCOE是△BCD的中位線,

OEAB,

ABCD的周長為28BD10,

AB+BC14,

BE+OE7BO5

∴△OBE的周長為=BE+OE+BO7+512

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某草莓種植大戶,今年從草莓上市到銷售完需要20天,售價為15元/千克,成本y(元/千克)與第x天成一次函數(shù)關系,當x=10時,y=7,當x=15時,y=6.5

1)求成本y(元/千克)與第x天的函數(shù)關系式并寫出自變量x的取值范圍;

2)求第幾天每千克的利潤w(元)最大?最大利潤是多少?(利潤=售價-成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM

(1)求證: DMCE;

(2)AD6BD8,DM2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有6個質地和大小均相同的球,每個球只標有一個數(shù)字,將標有3,4,5的三個球放入甲箱中,標有4,5,6的三個球放入乙箱中.

(1)小宇從甲箱中隨機模出一個球,求摸出標有數(shù)字是3的球的概率;

(2)小宇從甲箱中、小靜從乙箱中各自隨機摸出一個球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇略勝一籌.請你用列表法(或畫樹狀圖)求小宇略勝一籌的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點,的中點,上一點,四邊形是菱形,則的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,建設宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數(shù)關系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張師傅駕駛某種型號轎車從甲地去乙地,該種型號轎車每百公里油耗為10升(每行駛100公里需消耗10升汽油).途中在加油站加了一次油加油前,根據(jù)儀表盤顯示,油箱中還剩4升汽油.假設加油前轎車以80公里/小時的速度勻速行駛,加油后轎車以90公里/小時的速度勻速行駛(不計加油時間),已知油箱中剩余油量y(升)與行駛時間t(小時)之間的函數(shù)關系如圖所示.

(1) 加油前,該轎車每小時消耗汔油 加油后,該轎車每小時消耗汔油 ;

(2)求加油前油箱剩余油量y(升)與行駛時間t(小時)之間的函數(shù)表達式;

(3)求張師傅在加油站加了多少升汽油

查看答案和解析>>

同步練習冊答案