【題目】在“全民讀書月”活動中,小明調(diào)查了班級里40名同學(xué)本學(xué)期計劃購買課外書的花費情況,并將結(jié)果繪制成如圖所示的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:(直接填寫結(jié)果)
(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ;
(2)這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是 ;
(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計本學(xué)期計劃購買課外書花費50元的學(xué)生有 人.
【答案】(1)30元;(2)50元;(3)250.
【解析】試題分析:(1)根據(jù)眾數(shù)的定義即可判判斷;
根據(jù)中位數(shù)的定義即可判斷;
先計算出樣本中計劃購買課外書花費50元的學(xué)生所占的比例,然后在乘以總?cè)藬?shù)即可;
試題解析:(1)花費30元的有12人,最多,故眾數(shù)是30元;
一共有40個數(shù)據(jù),排序后第20、21個數(shù)據(jù)的平均數(shù)即是中位數(shù),6+12=18<20,6+12+10=28>20,故第20、21個數(shù)據(jù)都是50元,故中位數(shù)是50元;
10÷40×2400=600(人),故估計本學(xué)期計劃購買課外書花費50元的學(xué)生有50人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有6位同學(xué)幫助美術(shù)老師裝裱美術(shù)作品,其中有部分同學(xué)裝裱過,是熟手,部分同學(xué)是生手,每20分鐘,熟手可裝裱3件,生手可裝裱2件,經(jīng)過2個小時,6位同學(xué)共裝裱作品84件.
(1)如果設(shè)熟手為位,那么生手是 位(用表示)
(2)2小時熟手共裝裱 個,生手共裝裱 個,(用含的代數(shù)式表示)
(3)列方程,求出熟手和生手各幾位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,矩形OABC的頂點O、A、C的坐標分別為O(0,0),A(﹣x,0),C(0,y),且x、y滿足.
(1)矩形的頂點B的坐標是 .
(2)若D是AB中點,沿DO折疊矩形OABC,使A點落在點E處,折痕為DO,連BE并延長BE交y軸于Q點.
①求證:四邊形DBOQ是平行四邊形.
②求△OEQ面積.
(3)如圖2,在(2)的條件下,若R在線段AB上,AR=4,P是AB左側(cè)一動點,且∠RPA=135°,求QP的最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲乙兩人相距s(米),甲行走的時間為t(分),s關(guān)于t的函數(shù)圖象的一部分如圖所示.下列結(jié)論正確的個數(shù)是( 。
(1)t=5時,s=150;(2)t=35時,s=450;(3)甲的速度是30米/分;(4)t=12.5時,s=0.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠BAO=∠DAO.
(1)求證:平行四邊形ABCD是菱形;
(2)請?zhí)砑右粋條件使菱形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,連接AC,過點C作直線CD⊥AB于點D,E是AB上一點,直線CE與⊙O交于點F,連結(jié)AF,與直線CD交于點G.
求證:(1)∠ACD=∠F; (2)AC2=AG·AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有公共端點的兩條線段,組成一條折線,若該折線上一點把這條折線分成相等的兩部分,我們把這個點叫做這條折線的“折中點”.已知點是折線的“折中點”,點為線段的中點,,,則線段的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點A在y軸正半軸上,頂點C在x軸正半軸上,拋物線(a<0)的頂點為D,且經(jīng)過點A、B.若△ABD為等腰直角三角形,則a的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境
小明和小麗共同探究一道數(shù)學(xué)題:
如圖①,在△ABC中,點D是邊BC的中點,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長AD至點E,使DE=AD,構(gòu)造全等三角形.
小麗的思路是:過點C作CE∥AB,交AD的延長線于點E,構(gòu)造全等三角形.
選擇小明、小麗其中一人的方法解決問題情境中的問題.
類比應(yīng)用
如圖②,在四邊形ABCD中,對角線AC、BD相交于點O,點O是BD的中點,
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com