如圖所示,A,B兩地之間有條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A?D?C?B到達(dá).現(xiàn)在新建了橋EF,可直接沿直線AB從A地到達(dá)B地.已知BC=11km,∠A=45°,∠B=37°,橋DC和AB平行,則現(xiàn)在從A地到B地可比原來少走多少路程(結(jié)果精確到0.1km.參考數(shù)據(jù):≈1.41,sin37°≈0.60,cos37°≈0.80)

【答案】分析:少走路程就是(AD+CD+BC-AB)的長.過點(diǎn)D作DH⊥AB于H,DG∥CB交AB于G.將梯形問題轉(zhuǎn)化為三角形中求解.
解答:解:如圖,過點(diǎn)D作DH⊥AB于H,DG∥CB交AB于G.
∵DC∥AB,
∴四邊形DCBG為平行四邊形.
∴DC=GB,GD=BC=11.
∴兩條路線路程之差為AD+DG-AG.
在Rt△DGH中,
DH=DG•sin37°≈11×0.60=6.60,
GH=DG•cos37°≈11×0.80≈8.80.
在Rt△ADH中,
AD=DH≈1.41×6.60≈9.31.
AH=DH≈6.60.
∴AD+DG-AG=(9.31+11)-(6.60+8.80)≈4.9(km).
即現(xiàn)在從A地到B地可比原來少走約4.9km.
點(diǎn)評:將梯形中的問題轉(zhuǎn)化為三角形問題是解決梯形問題的常用方法,常作的輔助線有平移腰、平移對角線、作高等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,A,B兩地之間有條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A?D?C?B到達(dá).現(xiàn)在新建了橋EF,可直接沿直線AB從A地到達(dá)B地.已知BC=11km,∠A=45°,∠B=37°,橋DC和AB平行,則現(xiàn)在從A地到B地可比原來少走多少路程(結(jié)果精確到0.1km.參考數(shù)據(jù):
2
≈1.41,sin37°≈0.60,cos37°≈0.80)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、溫州的交通甚是擁擠,若要在如圖所示的A,B兩地區(qū)間建一地鐵隧道,在A地測得地鐵隧道走向是北偏東76°,那么為了使地鐵隧道能夠準(zhǔn)確接通,則B地施工角度應(yīng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,A、B兩地相距50千米,甲于某日下午1時(shí)騎自行車從A地出發(fā)駛往B地,乙也于同日下午騎摩托車按同路從A地出發(fā)駛往B地,如圖所示,圖中的折線PQR和線段MN分別表示甲、乙所行駛的路程S與該日下精英家教網(wǎng)午時(shí)間t之間的關(guān)系.
根據(jù)圖象回答下列問題:
(1)甲和乙哪一個(gè)出發(fā)的更早?早出發(fā)多長時(shí)間?
(2)甲和乙哪一個(gè)更早到達(dá)B城,早多長時(shí)間?
(3)乙出發(fā)大約用多長時(shí)間就追上甲?
(4)描述一下甲的運(yùn)動(dòng)情況.
(5)請你根據(jù)圖象上的數(shù)據(jù),分別求出乙騎摩托車的速度和甲騎自行車在全程的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)如圖所示,A,B兩地隔河相望,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達(dá)B地,現(xiàn)在直線AB(與橋DC平行)上建了新橋EF,可沿直線AB從A地直達(dá)B地,已知BC=1000m,∠A=45°,∠B=37°.問:現(xiàn)在從A地到達(dá)B地可比原來少走多少路程?
(結(jié)果精確到1m.參考數(shù)據(jù):
2
≈1.41
,sin37°≈0.60,cos37°≈0.80)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溧水縣二模)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達(dá),現(xiàn)在新建了橋EF,可直接沿直線AB從A地到達(dá)B地.已知BC=16km,∠A=53°,∠B=30°.橋DC和AB平行,則現(xiàn)在從A地到達(dá)B地可比原來少走多少路程?
(結(jié)果精確到0.1km.參考數(shù)據(jù):
3
≌1.73
,sin53°≈0.80,cos53°≈0.60)

查看答案和解析>>

同步練習(xí)冊答案