【題目】如圖,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,過點DE∥AB,分別交AC、BC于F、E,設(shè) = , = .求:
(1)向量 (用向量 、 表示);
(2)tanB的值.
【答案】
(1)解:∵AD∥BC,
∴∠DAC=∠ACB,
∴AC平分∠DCB,
∴∠DCA=∠ACB,
∴∠DAC=∠DCA,
∴AD=DC,
∵DE∥AB,AB⊥AC,
∴DE⊥AC,
∴AF=CF,
∴BE=CE,
∵AD∥BC,DE∥AB,
∴四邊形ABED是平行四邊形,
∴DE=AB,
∴ = = , = = ,
∴ = + .
(2)解:∵∠DCF=∠ACB,∠DFC=∠BAC=90°,
∴△DFC∽△BAC,
∴ = = ,
∵CD=AD=3,∴BC=6,
在Rt△BAC中,∠BAC=90°,
∴AC= = =2 ,
∴tanB= = = .
【解析】(1)首先證明四邊形ABED是平行四邊形,推出DE=AB,推出 = = , = = , = + .(2)由△DFC∽△BAC,推出 = = ,求出BC,在Rt△BAC中,∠BAC=90°,根據(jù)AC= = =2 ,由tanB= ,即可解決問題.
【考點精析】根據(jù)題目的已知條件,利用梯形的定義和解直角三角形的相關(guān)知識可以得到問題的答案,需要掌握一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F(xiàn)在函數(shù)y= (x>0)的圖象上,直線EF分別與x軸、y軸交于點A,B,且BE:BF=1:m.過點E作EP⊥y軸于P,已知△OEP的面積為1,則k值是 , △OEF的面積是(用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AC與BD交于O點,DO:BO=1:2,點E在CB的延長線上,如果S△AOD:S△ABE=1:3,那么BC:BE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC=5,BC=8,∠PDQ的頂點D在BC邊上,DP交AB邊于點E,DQ交AB邊于點O且交CA的延長線于點F(點F與點A不重合),設(shè)∠PDQ=∠B,BD=3.
(1)求證:△BDE∽△CFD;
(2)設(shè)BE=x,OA=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)當△AOF是等腰三角形時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的四個頂點正好落在四條平行線上,并且從上到下每兩條平行線間的距離都是1,如果AB:BC=3:4,那么AB的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某廣場臺階(結(jié)合輪椅專用坡道)景觀設(shè)計的模型,以及該設(shè)計第一層的截面圖,第一層有十級臺階,每級臺階的高為0.15米,寬為0.4米,輪椅專用坡道AB的頂端有一個寬2米的水平面BC;《城市道路與建筑物無障礙設(shè)計規(guī)范》第17條,新建輪椅專用坡道在不同坡度的情況下,坡道高度應(yīng)符合以下表中的規(guī)定:
坡度 | 1:20 | 1:16 | 1:12 |
最大高度(米) | 1.50 | 1.00 | 0.75 |
(1)選擇哪個坡度建設(shè)輪椅專用坡道AB是符合要求的?說明理由;
(2)求斜坡底部點A與臺階底部點D的水平距離AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC=5,BC=6,E為BA延長線上的一點,AE= AB,D為BC的中點,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿對角線AC折疊,點B落在點E處,CE與AD相交于點O.
(1)求證:△AOE≌△COD;
(2)若∠OCD=30°,AB= ,求△AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com