【題目】如圖,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°
(1)求證:CE=BD;
(2)求證:CE⊥BD.
【答案】(1)、證明過程見解析;(2)、證明過程見解析.
【解析】
試題分析:(1)、由已知條件證出∠CAE=∠BAD,由SAS證明△CAE≌△BAD,得出對(duì)應(yīng)邊相等即可;
(2)、延長(zhǎng)BD交CE于F,由全等三角形的性質(zhì)得出∠ACE=∠ABD,由角的互余關(guān)系得出∠ABC+∠ACB=90°,證出∠DBC+∠BCF=90°,得出∠BFC=90°即可.
試題解析:(1)、∵∠CAB=∠EAD=90°, ∴∠CAE=∠BAD. 在△CAE和△BAD中,
, ∴△CAE≌△BAD(SAS), ∴CE=BD.
(2)、延長(zhǎng)BD交CE于F,如圖所示: ∵△CAE≌△BAD, ∴∠ACE=∠ABD, ∵∠CAB=90°,
∴∠ABC+∠ACB=90°, 即∠ABD+∠DBC+∠ACB=90°, ∴∠DBC+∠ACB+∠ACE=90°,
即∠DBC+∠BCF=90°, ∴∠BFC=90°, ∴CE⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 有兩個(gè)角為直角的四邊形是矩形
B. 矩形的對(duì)角線相等
C. 平行四邊形的對(duì)角線相等
D. 對(duì)角線互相垂直的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形具有而菱形不一定具有的性質(zhì)是 ( )
A.對(duì)角線相等B.對(duì)角線互相垂直平分
C.四條邊相等D.對(duì)角線平分一組對(duì)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果銷售點(diǎn)用1000元購(gòu)進(jìn)甲、乙兩種新出產(chǎn)的水果共140千克,這兩種水果的進(jìn)價(jià)、售價(jià)如表所示:
(1)這兩種水果各購(gòu)進(jìn)多少千克?
(2)若該水果店按售價(jià)銷售完這批水果,獲得的利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根據(jù)上述規(guī)律,第n個(gè)等式應(yīng)表示為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列結(jié)論錯(cuò)誤的是( ).
A.AE∥BC B. ∠ADE=∠BDC
C.△BDE是等邊三角形 D. △ADE的周長(zhǎng)是9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):5,7,4,8,6,7,2,則它的眾數(shù)及中位數(shù)分別為( )
A. 7,8 B. 7,6 C. 6,7 D. 7,4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com