.已知拋物線x軸交于兩點(diǎn)

,與y軸交于點(diǎn)C,AB=6.

(1)求拋物線和直線BC的解析式.

(2)在給定的直角坐標(biāo)系中,畫出拋物線和直線BC

(3)若⊙P過A、B、C三點(diǎn),求⊙P的半徑.

(4)拋物線上是否存在點(diǎn)M,過點(diǎn)M軸于點(diǎn)N,使被直線BC分成面積比為的兩部分?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

 

 

 

 

 

 

 

 

(1)由題意得: 

∴直線BC的解析式為             ……….(4分)

(2)圖象.                                   .........(6分)

 

 

 

 

 

 

 

 

 

 

 

(3)解法一:在中,OA=OC=5,∴∠OAC=45 

 

∴⊙P的半徑           ……(8分)

(4)設(shè)MN交直線BC于點(diǎn)E,點(diǎn)M的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為

,則

解得(不合題意舍去),,

,則

解得(不合題意舍去),,

        存在點(diǎn)M,點(diǎn)M的坐標(biāo)為或(15,280). …….(10分)

 

 

 解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在其對稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)M是拋物線上一點(diǎn),以B,C,D,M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在坐標(biāo)平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點(diǎn)G的坐標(biāo);
(3)在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;  
(4)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽一模)如圖,已知拋物線與x軸交于A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C(0,-2)點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)G是線段BC上的動(dòng)點(diǎn),作GH∥AC交AB于H,連接CH,當(dāng)△BGH的面積是△CGH面積的3倍時(shí),求H點(diǎn)的坐標(biāo);
(3)若M為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過M作y軸的平行線,交AC于N,當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段MN的值最大,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在坐標(biāo)平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點(diǎn)G的坐標(biāo);
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(1,0),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為P,連接AC.
(1)求此拋物線的解析式;
(2)拋物線對稱軸上是否存在一點(diǎn)M,使得S△MAP=2S△ACP?若存在,求出M點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案