14.①計算:|-3|+(π+1)0-$\sqrt{9}+\root{3}{8}$
②解方程:4(x-1)2-9=0.

分析 ①原式第一項利用絕對值的代數(shù)意義化簡,第二項利用零指數(shù)冪法則計算,第三項利用算術平方根定義計算,最后一項利用立方根定義計算即可得到結果;
②方程整理后,利用平方根定義開方即可求出解.

解答 解:①原式=3+1-3+2=3;
②方程整理得:(x-1)2=$\frac{9}{4}$,
開方得:x-1=±$\frac{3}{2}$,
解得:x1=$\frac{5}{2}$,x2=-$\frac{1}{2}$.

點評 此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

4.若非0有理數(shù)a使得關于x的分式方程$\frac{x}{x-1}$-1=$\frac{a}{(x-1)(x-2)}$無解,則a=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.計算
(1)4×(-5)-16÷(-8)-(-10)
(2)-12016-(1-$\frac{1}{5}$)÷[-32+(-2)2].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

2.57°55′-32°46′=25°9′.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.如圖,在平面直角坐標系中,頂點為(4,1)的拋物線交y軸于點A,交x軸于B,C兩點(點B在點C的左側),已知C點坐標為(6,0).
(1)求此拋物線的解析式;
(2)已知點P是拋物線上的一個動點,且位于A,C兩點之間.問:當點P運動到什么位置時,△PAC的面積最大?求出△PAC的最大面積;
(3)連接AB,過點B作AB的垂線交拋物線于點D,以點C為圓心的圓與拋物線的對稱軸l相切,先補全圖形,再判斷直線BD與⊙C的位置關系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.如圖,數(shù)軸上的點A表示的數(shù)為a,則a的相反數(shù)等于( 。
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.如圖,∠ABE=∠E,∠A=∠C,試說明∠1+∠2=180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.已知一次函數(shù)y=kx+2與y=x-1的圖象相交,交點的橫坐標為2.
(1)求k的值;
(2)直接寫出二元一次方程組$\left\{\begin{array}{l}{y=kx+2}\\{y=x-1}\end{array}\right.$的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,如圖,矩形ABCD中,AB=6cm,BC=8cm,點F為BC邊上的一點,將△ABF沿AF翻折得△AEF,且點E恰好在對角線AC上.以EF、EC為邊做平行四邊形EFGC,并將其沿線段CA以每秒1cm的速度運動,記運動中的平行四邊形為E′F′G′C′,運動時間為t,當點C′到點A時停止運動.
(1)tan∠BAF=$\frac{1}{2}$,S矩形EFGC=12cm2;(直接填空)
(2)記運動過程中平行四邊形E′F′G′C′與△AFC的重疊部分為S,求出S與t之間的函數(shù)關系式以及對應的t的取值范圍;
(3)設運動過程中線段AF與E′F′交與點H,AH=x,是否存在這樣的x,使得△HFC′為直角三角形?若有,直接寫出x的值;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案