如圖,經(jīng)過原點的拋物線與軸的另一個交點為A.過點作直線軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(B、C不重合).連結(jié)CB,CP。
1.當時,求點A的坐標及BC的長;
2.當時,連結(jié)CA,問為何值時?
3.過點P作且,問是否存在,使得點E落在坐標軸上?若存在,求出所有滿足要求的的值,并定出相對應的點E坐標;若不存在,請說明理由。
1.當m=3時,y=-x²+6x
令y=0,得-x²+6x=0,
∴∴A(6,0)
當x=1時,y=5,∴B(1,5)
又∵拋物線的對稱軸為直線x=3,
又∵B、C關于對稱軸對稱,∴BC=4 (4分)
2.過點C作CH⊥x軸于點H(如圖1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°,
∴△ACH∽△PCB
∵拋物線的
對稱軸為直線x=m,其中,
又∵B,C關于對稱軸對稱,
∴BC=2(m-1)
∵B(1,2 m-1),P(1,m),
∴BP= m-1,
又∵A(2m,0),C(2m-1,2m-1),
∴H(2m-1,0)
∴AH=1,CH=2m-1
∴(8分)
3.∵B,C不重合,∴m≠1,
(Ⅰ)當m>1時,BC=2(m-1)
PM=m, BP= m-1.
(ⅰ)若點E在x軸上(如圖2),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP =90°
∴∠MEP=∠BPC
又∵∠PME=∠CBP=90°,PC=EP
∴△BPC≌△MEP
∴BC=PM,
∴2(m-1)=m
∴m=2
此時點E的坐標是(2,0)
(ⅱ)若點E在y軸上(如圖3)
過點P作PN⊥y軸于點N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴ m-1=1,
∴m=2,
此時點E的坐標是(0,4)
(Ⅱ)當0<m<1時, BC=2(m-1),PM=m
BP= m-1.
(ⅰ) 若點E在x軸上(如圖4),
易證△PBC≌△MEP,
∴BC=PM
2(m-1)=m
∴m=
此時點E的坐標是(,0)
(ⅱ)若點E在y軸上(如圖5)
過點P作PN⊥y軸于點N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴ 1-m =1,
∴m=0,(∵m>0,舍去)
綜上所述,當m=2時,點E的坐標是(2,0)或(0,4);
當m=時,點E的坐標是(,0)(14分)
【解析】1)把m=3,代入拋物線的解析式,令y=0解方程,得到的非0解即為和x軸交點的橫坐標,再求出拋物線的對稱軸方程,進而求出BC的長;
(2)過點C作CH⊥x軸于點H(如圖1)由已知得∠ACP=∠BCH=90°,利用已知條件證明△AGH∽△PCB,根據(jù)相似的性質(zhì)得到:,再用含有m的代數(shù)式表示出BC,CH,BP,代入比例式即可求出m的值;
(3)存在,本題要分當m>1時,BC=2(m-1),PM=m,BP=m-1和當0<m<1時,BC=2(1-m),PM=m,BP=1-m,兩種情況分別討論,再求出滿足題意的m值和相對應的點E坐標.
【解析】略
科目:初中數(shù)學 來源: 題型:
1 | 20 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年江蘇省江陰市顧山九年級上學期期末考試數(shù)學試卷(解析版) 題型:選擇題
.如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是
A.13?????? B.14? ???? C.15?????? D.16
查看答案和解析>>
科目:初中數(shù)學 來源:2013年浙江省湖州市中考數(shù)學試卷(解析版) 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(江蘇南通卷)數(shù)學(解析版) 題型:解答題
如圖,經(jīng)過點A(0,-4)的拋物線y=x2+bx+c與x軸相交于點B(-0,0)和C,O為坐標原點.
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移個單位長度、再向左平移m(m>0)個單位長度,得到新拋物
線.若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com