如圖,在直角坐標(biāo)系xoy中,以原點(diǎn)為圓心的⊙O的半徑是
4
5
5
,過精英家教網(wǎng)A(0,4)作⊙O的切線交x軸于點(diǎn)B,T是切點(diǎn),拋物線y=ax2+bx+c的頂點(diǎn)為C(3,-
1
2
),且拋物線過A、B兩點(diǎn).
(1)求此拋物線的解析式;
(2)如果此拋物線的對稱軸交x軸于D點(diǎn),問在y軸的負(fù)半軸上是否存在點(diǎn)P,使△BCD∽△OPB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
分析:(1)可根據(jù)C點(diǎn)的坐標(biāo),用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線的解析式,然后將A點(diǎn)坐標(biāo)代入求解即可.
(2)先根據(jù)拋物線的解析式求出B點(diǎn)的坐標(biāo),然后可分兩種情況討論:
①當(dāng)△BCD∽△BPO,那么
CD
OP
=
OD
OB
;②當(dāng)△BCD∽△PBO,則有
BD
OP
=
CD
OB
;
根據(jù)上述兩種情況中不同的對應(yīng)成比例線段可求出不同的符合條件的P點(diǎn)坐標(biāo).
解答:解:(1)設(shè)拋物線的解析式為y=a(x-3)2-
1
2
,
已知拋物線過A點(diǎn),則有:
a(0-3)2-
1
2
=4,
解得a=
1
2

此拋物線的解析式為:y=
1
2
(x-3)2-
1
2


(2)∵B(2,0);C(3,-
1
2
);D(3,0)
∴BD=1,CD=
1
2
,OB=2
∵要使△BCD∽△OPB
∴只需
BD
OB
=
CD
OP
BD
OP
=
CD
OB

即:
1
2
=
1
2
OP
1
OP
=
1
2
2

解得:OP=
1
4
或4
∴P(0,-
1
4
)或(0,-4).
故:在y軸的負(fù)半軸上是否存在點(diǎn)P(0,-
1
4
)或(0,-4),使△BCD∽△OPB.
點(diǎn)評:本題主要考查了二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)等知識點(diǎn).(2)題要根據(jù)相似三角形的對應(yīng)線段的不同分類進(jìn)行求解,不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,⊙M與y軸相切于點(diǎn)C,與x軸交于A(x1,0),B(x2,0)兩點(diǎn),其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接MC,過A、B、C三點(diǎn)的拋物線的頂點(diǎn)為N.
(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關(guān)系,并說明理由;
(3)一動點(diǎn)P從點(diǎn)C出發(fā),以每秒1個單位長的速度沿CM向點(diǎn)M運(yùn)動,同時,一動點(diǎn)Q從點(diǎn)B出發(fā),沿射線BA以每秒4個單位長度的速度運(yùn)動,當(dāng)P運(yùn)動到M點(diǎn)時,兩動點(diǎn)同時停止運(yùn)動,當(dāng)時間t為何值時,以Q、O、C為頂點(diǎn)的三角形與△PCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中放入一邊長OC為6的矩形紙片ABCO,將紙翻折后,使點(diǎn)B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點(diǎn)的坐標(biāo);
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過G點(diǎn),以O(shè)為圓心OG的長為精英家教網(wǎng)半徑的圓與拋物線是否還有除G點(diǎn)以外的交點(diǎn)?若有,請找出這個交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已如:如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,AB為⊙C的直徑,PA切⊙O于點(diǎn)A,交x軸的負(fù)半軸于點(diǎn)P,連接PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動,原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形
POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB,若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫過程);若不存在,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個點(diǎn).
(1)順次連接A,B,C,D四個點(diǎn)組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個單位向右3個單位后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點(diǎn)的坐標(biāo);
(2)以A為直角頂點(diǎn)作等腰直角三角形△ADB,直接寫出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)B在第四象限時,將△ADB沿直線BD翻折得到△A′DB,點(diǎn)P為線段BD上一動點(diǎn)(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案