【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+mx+n經(jīng)過(guò)點(diǎn)B(6,1),C(5,0),且與y軸交于點(diǎn)A.
(1)求拋物線的表達(dá)式及點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是y軸右側(cè)拋物線上的一點(diǎn),過(guò)點(diǎn)P作PQ⊥OA,交線段OA的延長(zhǎng)線于點(diǎn)Q,如果∠PAB=45°.求證:△PQA∽△ACB;
(3)若點(diǎn)F是線段AB(不包含端點(diǎn))上的一點(diǎn),且點(diǎn)F關(guān)于AC的對(duì)稱點(diǎn)F′恰好在上述拋物線上,求FF′的長(zhǎng).
【答案】(1)y=x2﹣x+5,點(diǎn)A坐標(biāo)為(0,5);(2)詳見(jiàn)解析;(3).
【解析】
(1)將點(diǎn)B、C代入拋物線解析式y=x2+mx+n即可;
(2)先證△ABC為直角三角形,再證∠QAP+∠CAB=90°,又因∠AQP=∠ACB=90°,即可證△PQA∽△ACB;
(3)做點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B',求出BB'的坐標(biāo),直線AB'的解析式,即可求出點(diǎn)F'的坐標(biāo),接著求直線FF'的解析式,求出其與AB的交點(diǎn)即可.
解:(1)將B(6,1),C(5,0)代入拋物線解析式y=x2+mx+n,
得
解得,m=﹣,n=5,
則拋物線的解析式為:y=x2﹣x+5,點(diǎn)A坐標(biāo)為(0,5);
(2)∵AC=,BC=,AB=,
∴AC2+BC2=AB2,
∴△ABC為直角三角形,且∠ACB=90°,
當(dāng)∠PAB=45°時(shí),點(diǎn)P只能在點(diǎn)B右側(cè),過(guò)點(diǎn)P作PQ⊥y 軸于點(diǎn)Q,
∴∠QAB+∠OAB=180°﹣∠PAB=135°,
∴∠QAP+∠CAB=135°﹣∠OAC=90°,
∵∠QAP+∠QPA=90°,∴∠QPA=∠CAB,
又∵∠AQP=∠ACB=90°,∴△PQA∽△ACB;
(3)做點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B',則A,F',B'三點(diǎn)共線,
由于AC⊥BC,根據(jù)對(duì)稱性知點(diǎn)B'(4,﹣1),
將B'(4,﹣1)代入直線y=kx+5,
∴k=﹣,∴yAB'=﹣x+5,
聯(lián)立解得,x1=,x2=0(舍去),
則F'(,﹣),
將B(6,1),B'(4,﹣1)代入直線y=mx+n,
得,解得,∴yBB'=x﹣5,
由題意知,kFF'=KBB',∴設(shè)yFF'=x+b,
將點(diǎn)F'(,﹣)代入,得,b=﹣,
∴yFF'=x﹣,
聯(lián)立解得,
∴F(,),
則FF'==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間具有某種函數(shù)關(guān)系,其對(duì)應(yīng)規(guī)律如下表所示
售價(jià)x(元/本) | … | 22 | 23 | 24 | 25 | 26 | 27 | … |
銷售量y(件) | … | 36 | 34 | 32 | 30 | 28 | 26 | … |
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式: .
(2)設(shè)該文店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為W元,寫(xiě)出W與x之間的函數(shù)關(guān)系式,并求出該紀(jì)念冊(cè)的銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)每周所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,分別以AB,AC為斜邊作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,連接DE.若DE=5,則BC長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋中裝有4張卡片,分別印有數(shù)字1、2、3、6,這4張卡片除印有的數(shù)字不同外,其余都相同.
(1)攪勻后從中任意摸出1張卡片,摸到印有奇數(shù)卡片的概率為_______;
(2)攪勻后從中任意摸出1張卡片,將該卡片印有的數(shù)字記為,再?gòu)氖S?/span>3張卡片中任意摸出1張卡片,將該卡片印有的數(shù)字記為,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出點(diǎn)在反比例函數(shù)圖像上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,點(diǎn)P在邊BC上,聯(lián)結(jié)AP,將△ABP繞著點(diǎn)A旋轉(zhuǎn),使得點(diǎn)P與邊AC的中點(diǎn)M重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,則BB′的長(zhǎng)等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題 :如圖1,在四邊形中,點(diǎn)為上一點(diǎn),∠=∠=∠=90°,求證:.
(2)探究:如圖2,在四邊形中,點(diǎn)為上一點(diǎn),當(dāng)∠=∠=∠時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長(zhǎng)AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,
(1)求證:CD是⊙O的切線;
(2)若BC=3,AB=5,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:DC是⊙O的切線;
(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過(guò)點(diǎn)(0,5)
(1)求m的值,并寫(xiě)出二次函數(shù)的表達(dá)式;
(2)求出二次函數(shù)圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com