如圖,作△ABC的中線AD,并將△ADC繞點D旋轉180°,那么點C與點B重合,點A轉到A′點,不難發(fā)現(xiàn)AC=A′B,AD=A′D,BD=DC,如果知道AB=4cm,AC=3cm,你能求出中線AD的范圍嗎?

【答案】分析:由旋轉的性質可得△ADC≌△A′DB,從而得到A′B=AC=3cm;在△ABA′中,AB-A′B<AA′<AB+A′B,各邊的長已知,則可以根據(jù)此不等式求出AA′的長.2AD=AA′,從而可求得AD的范圍.
解答:解:由AC=A′B,AD=A′D,BD=DC,可知△ADC≌△A′DB,
∴A′B=AC=3cm.
在△ABA′中,AB-A′B<AA′<AB+A′B,
∴1cm<AA′<7cm,則cm<AD<cm.
即中線AD的長在cm至cm之間.
點評:此題主要考查學生對全等三角形的判定及三角形的三邊關系的理解及掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、(1)如圖1,在△ABC中,∠ABC的平分線BF與∠ACB的平分線CF相交于F,過點F作DE∥BC,交直線AB于點D,交直線AC于點E,求證:BD+CE=DE;
(2)如圖2,△ABC的外角平分線BF、CF相交于F,過點F作DE∥BC,交直線AB于點D,交直線AC于點E,那么BD,CE,DE之間存在什么關系?
(3)如圖3,∠ABC的平分線BF與∠ACB的外角平分線CF相交于F,過點F作DE∥BC,交直線AB于點D,交直線AC于點E,那么BD,CE,DE之間存在什么關系?根據(jù)(1)、(2)寫出你的猜想,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們知道,任何一個三角形的三條內(nèi)角平分線相交于一點,如圖,若△ABC 的三條內(nèi)角平分線相交于點I,過I作DE⊥AI分別交AB、AC于點D、E.
(1)請你通過畫圖、度量,填寫右上表(圖畫在草稿紙上,并盡量畫準確)
(2)從上表中你發(fā)現(xiàn)了∠BIC與∠BDI之間有何數(shù)量關系,請寫出來,并說明其中的道理.
∠BAC的度數(shù) 40° 60° 90° 120°
∠BIC的度數(shù)        
∠BDI的度數(shù)        

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯了呢?
這說明我們今后在解題時又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點O,OE垂直AB于點E,那么三條線段AB、AC、BE有何等量關系?請你寫出來并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過△ABC的頂點A作AE⊥BC,垂足為E.點D是射線AE上一動點(點D不與頂點A重合),連接DB、DC.已知BC=m,AD=n
(1)若動點D在BC的下方時(如圖①),求S四邊形ABDC的值(結果用含m、n的代數(shù)式表示);
(2)若動點D在BC的上方時(如圖②),(1)中結論是否仍成立?說明理由;
(3)請你按以下要求在8×6的方格中(如圖③,每一個小正方形的邊長為1),設計一個軸對稱圖形.設計要求如下:對角線互相垂直且面積為6的格點四邊形(4個頂點都在格點上).

查看答案和解析>>

同步練習冊答案