如圖,在□ABCD中,AE⊥BC于E,AE=EB=EC=,且是一元二次方程的根,則□ABCD的周長(zhǎng)為( )

A.                             B.

C.                             D.

 

【答案】

A

【解析】

試題分析:根據(jù)平行四邊形的性質(zhì)結(jié)合AE⊥BC可得AE=EB=EC=a,即可得到△AEB是等腰直角三角形,由勾股定理可求得AB、BC的長(zhǎng),解一元二次方程即可求得a的值,從而求得結(jié)果.

∵平行四邊形ABCD

∴AD∥BC,

∵AE⊥BC于E,

∵AE=EB=EC=a,

∴△AEB是等腰直角三角形,由勾股定理得:AB2=AE2+BE2,即AB=a,BC=BE+CE=2a,

∴平行四邊形ABCD的周長(zhǎng)=2(AB+BC)=2a(2+),

∵a是一元二次方程的根,解此方程得x=-3或x=1,顯然x=-3,不合題意,x=1,

∴x=a=1,

∴平行四邊形ABCD的周長(zhǎng)=2(AB+BC)=2a(2+)=2(2+)=4+2

故選A.

考點(diǎn):平行四邊形的性質(zhì),勾股定理,解一元二次方程

點(diǎn)評(píng):本題要求我們能根據(jù)所給的條件與圖形,觀察出△BAE的特殊性,綜合運(yùn)用平行四邊形的性質(zhì),勾股定理求得平行四邊形的周長(zhǎng).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案