【題目】朱先生利用分期付款的形式購買了一套住房,他購買的住房的價(jià)格為24萬元,交了首付之后每年付款y萬元,x年結(jié)清余款,y與x的函數(shù)關(guān)系如圖所示,請根據(jù)圖象所提供的信息,回答下列問題:
(1)確定y與x的函數(shù)解析式,并求出首付款的數(shù)目;
(2)朱先生若用10年結(jié)清余款,則每年應(yīng)付多少錢?
(3)如果朱先生打算每年付款不超過7000元,那么他至少需要幾年才能結(jié)清余款?
【答案】(1)(x>0),10萬元;(2)1.4萬元;(3)20.
【解析】(1)根據(jù)題意可知y與x的積是定值,由此可以確定是反比例函數(shù)關(guān)系,設(shè)解析式為y=,根據(jù)圖象中的數(shù)據(jù)利用待定系數(shù)法求得k后即可得出解析式,用24-k即可求得首付款;
(2)把x=10代入(1)中的解析式即可求得;
(3)由題意可得關(guān)于x的不等式,解不等式即可得.
(1)設(shè)y=,把(2,7)代入,得k=14,所以y=(x>0),
24-14=10(萬元),所以首付款的數(shù)目為10萬元;
(2)當(dāng)x=10時(shí),y===1.4,
所以朱先生每年應(yīng)付1.4萬元;
(3)7000元=0.7萬元,當(dāng)y≤0.7時(shí),x≥=20,
即朱先生至少需要20年才能結(jié)清余款.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)某班同學(xué)在慶祝2015年元旦晚會(huì)上進(jìn)行抽獎(jiǎng)活動(dòng).在一個(gè)不透明的口
袋中有三個(gè)完全相同的小球,把它們分別標(biāo)號(hào)1、2、3.隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回?fù)u勻,再從中隨
機(jī)摸出一個(gè)小球記下標(biāo)號(hào).
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標(biāo)號(hào)的所有結(jié)果;
(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號(hào)相同時(shí)中獎(jiǎng),求中獎(jiǎng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測量被池塘隔開的兩棵樹A,B之間的距離,他們設(shè)計(jì)了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到點(diǎn)E處,再從點(diǎn)E沿著垂直于AE的方向走到點(diǎn)F處,C為AE上一點(diǎn),其中三位同學(xué)分別測得三組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹之間的距離的有________組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,點(diǎn)E、M分別為直線AB、CD上的點(diǎn),點(diǎn)N為兩平行線間的點(diǎn),連接NE、NM,過點(diǎn)N作NG平分∠ENM,交直線CD于點(diǎn)G,過點(diǎn)N作NF⊥NG,交直線CD于點(diǎn)F,若∠BEN=160°,則∠NGD﹣∠MNF=__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是( )
A. 2<AD<8B. 2<AD<4C. 1<AD<4D. 1<AD<8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)主持人站在舞臺(tái)的黃金分割點(diǎn)處最自然得體,如果舞臺(tái)AB長為20米,一個(gè)主持人現(xiàn)在站在A處,那么他應(yīng)至少再走________米才最理想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=BC=CD=AD=4cm,∠BAD=∠B=∠C=∠ADC=90°,點(diǎn)P以1cm/s的速度自點(diǎn)A向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q同時(shí)以1cm/s的速度自點(diǎn)B向終點(diǎn)C運(yùn)動(dòng),連接AQ、DP,設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)當(dāng)t= s時(shí),點(diǎn)P到達(dá)點(diǎn)B;
(2)求證:在運(yùn)動(dòng)過程中,△ABQ≌△DAP始終成立;
(3)如圖2,作QM∥PD,且QM=PD,作MN⊥射線BC于點(diǎn)N,連接CM,請問在Q的運(yùn)動(dòng)過程中,∠MCN的度數(shù)是否改變?如果不變,請求出∠MCN;如果改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com